Answer:
Percentage Yield is given as,
%age Yield = Actual Yield / Theoretical Yield × 100
This shows that the %age yield is directly depending upon the actual yield. And most of the time the percentage yield is less than 100 % because of the following factors.
Impure Starting Materials:
If the starting materials (reactants) are not pure then reaction will not completely form the desired product. Different by products will form which will decrease the %age yield.
Incomplete Reactions:
Not all reactions go to completion. In many reactions the starting material after some time stops forming the product due to different conditions. Some reactions attain equilibrium and stop increasing the amount of product. While, in some reactions a by products (like water) formed often react with the product to give a reverse reactions. Hence, the chemistry of reactions also causes the decrease in %age yield.
Handling:
Another major reason for decrease in yield is handling the product. Always some of the product is lost during the workup of the reaction like, taking TLC, doing solvent extraction, doing column chromatography, taking characterization spectrums. So, we can conclude that the %age yield will always be less than 100%.
Answer: B- 22.2 kg
Explanation: If three potatoes have mass of 667 g that means that each potato weighs 667/3= 222.33 g (approx) so 100 potatoes must be 100*222.33= 22233 g which equals 22.2 kg because 1 g=1000 kg
Answer:
Gastric Acid?
Explanation:
Acid seems like it would have more ph
Answer:
The rate of change of the temperature is 0.0365 Kelvin per minute.
Explanation:
<u>Step 1</u>: Given data
ideal gas law: P*V = n*R*T
with P= pressure of the gas ( in atm) = 9.0 atm
with V= volume of the gass (in L) =12L
with n = number of moles = 10 moles
R = gas constant = 0.0821 L*atm* K^−1*mo^−1
T = temperature = TO BE DETERMINED
The volume decreases with a rate of 0.17L/min = dV/dT = -0.17
The pressure increases at a rate of 0.13atm/min = dP/dT
<u>Step 2:</u> The ideal gas law
P * [dV/dT] + V * [dP/dT] = nR * dT/dt
9 atm * (-0.17L/min) + 12L * 0.13atm/min = 10 moles * 0.0821 L*atm* K^−1*mo^−1 *dT/dt
0.03 = 0.821 * dT/dt
dT/dt = 0.03/0.821
dT/dt = 0.0365
Since the gas constant is expressed in Kelvin and not in °C, this means that <u>the rate of chagnge of the temperature is 0.0365 Kelvin per 1 minute.</u>