The change in heat is simply equal to:
change in heat ΔH = final enthalpy – initial enthalpy
ΔH = [280.25 g * 4.18J/gC * (17.5°C)] – [280 g * 4.18J/gC
* 13.5°C]
ΔH = 4,699.89 J = 4.7 kJ
<span>Hence heat released is about 4.7 kJ</span>
This plateau is where a phase change occurs. Likely, this cooling curve observes the changing of a liquid into a solid (so that the temperature is quantifiable). As something cools, it’s losing energy to the surroundings; when a phase change occurs, like liquid to solid, energy isn’t lost directly from the atom, but instead the energy maintained by free motion of the atom is used. This lack of motion reduces it into a lattice (all while maintaining a constant internal energy), finalizing the phase change, after which energy is lost directly from the atom again.
Answer:
The statement correctly predicting and explaining the chemical reactivity of two metals is given below -Rubidium (Rb) is more reactive than strontium (Sr) because strontium atoms must lose more electrons
Explanation:
Answer:
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Explanation:
The given nuclear reaction shows alpha decay.
₈₆²²²Rn → ₈₄Po²¹⁸ + H₂⁴
Properties of alpha radiations:
Alpha radiations are emitted as a result of radioactive decay. The atom emit the alpha particles consist of two proton and two neutrons. Which is also called helium nuclei. When atom undergoes the alpha emission the original atom convert into the atom having mass number less than 4 and atomic number less than 2 as compared to parent atom the starting atom.
Alpha radiations can travel in a short distance.
These radiations can not penetrate into the skin or clothes.
These radiations can be harmful for the human if these are inhaled.
These radiations can be stopped by a piece of paper.
₉₂U²³⁸ → ₉₀Th²³⁴ + ₂He⁴ + energy
Answer:
<em>Answer Below</em>
Explanation:
Percent composition by element
<u>Element </u> <u>Symbol</u> <u>Mass Percent</u>
Aluminium <u>Al</u> 34.590%
Hydrogen <u>H</u> 3.877%
Oxygen <u>O</u> 61.533%