Answer:
a. 1.12 L
Explanation:
Step 1: Write the balanced equation for the photosynthesis
6 CO₂(g) + 6 H₂O(l) ⇒ C₆H₁₂O₆(s) + 6 O₂(g)
Step 2: Calculate the moles corresponding to 2.20 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
2.20 g × 1 mol/44.01 g = 0.0500 mol
Step 3: Calculate the moles of O₂ produced
The molar ratio of CO₂ to O₂ is 6:6. The moles of O₂ produced are 6/6 × 0.0500 mol = 0.0500 mol
Step 4: Calculate the volume occupied by 0.0500 moles of O₂ at STP
At STP, 1 mole of O₂ occupies 22.4 L.
0.0500 mol × 22.4 L/1 mol = 1.12 L
Answer:

Explanation:
You must calculate the moles of P₄O₁₀, convert to moles of P₂O₅, then convert to molecules of P₂O₅.
1. Moles of P₄O₁₀

2. Moles of P₂O₅
P₄O₁₀ ⟶ 2P₂O₅
The molar ratio is 2 mol P₂O₅:1 mol P₄O₁₀
3. Molecules of P₂O₅

Here we have to get the spin of the other electron present in a orbital which already have an electron which has clockwise spin.
The electron will have anti-clockwise notation.
We know from the Pauli exclusion principle, no two electrons in an atom can have all the four quantum numbers i.e. principal quantum number (n), azimuthal quantum number (l), magnetic quantum number (m) and spin quantum number (s) same. The importance of the principle also restrict the possible number of electrons may be present in a particular orbital.
Let assume for an 1s orbital the possible values of four quantum numbers are n = 1, l = 0, m = 0 and s = 
.
The exclusion principle at once tells us that there may be only two unique sets of these quantum numbers:
1, 0, 0, +
and 1, 0, 0, -
.
Thus if one electron in an orbital has clockwise spin the other electron will must be have anti-clockwise spin.
Answer:
this isnt even a question...
Explanation: what the heck
Answer:
Gravitational Force.
Gravitation is the agent that gives weight to objects with mass and causes them to fall on the ground when dropped.