<u>Hydrogen bonds </u>are weak bonds that are not strong enough to hold atoms together to form molecules but are strong enough to form bonds within and around large molecules.
- The hydrogen bond is weak bond.
- The hydrogen bond is electrostatic force of attraction between hydrogen atom and more electronegative atoms or group ( like Florine , oxygen or nitrogen) which is contently bonded.
- The hydrogen bond is occur in polar , contently bond atoms in different molecules.
- Example is H-O-H or

- The positively charged hydrogen side of one water molecule is bond with negatively charged oxygen side of another molecule.
learn about Hydrogen bond
brainly.com/question/10904296
#SPJ4
The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Given:
The nitrogen gas molecule with a temperature of 330 Kelvins is released from Earth's surface to travel upward.
To find:
The maximum height of a nitrogen molecule when released from the Earth's surface before coming to rest.
Solution:
- The maximum height attained by nitrogen gas molecule = h
- The temperature of nitrogen gas particle = T = 330 K
The average kinetic energy of the gas particles is given by:

The nitrogen molecule at its maximum height will have zero kinetic energy as all the kinetic energy will get converted into potential energy
- The potential energy at height h =

- Molar mass of nitrogen gas = 28.0134 g/mol
- Mass of nitrogen gas molecule = m

- The acceleration due to gravity = g = 9.8 m/s^2
- The maximum height attained by nitrogen gas molecule = h
- The potential energy is given by:


The maximum height at which nitrogen molecule will go before coming to rest is 14 kilometers.
Learn more about the average kinetic energy of gas particles here:
brainly.com/question/16615446?referrer=searchResults
brainly.com/question/6329137?referrer=searchResults
Answer:
a) Aqueous LiBr = Hydrogen Gas
b) Aqueous AgBr = solid Ag
c) Molten LiBr = solid Li
c) Molten AgBr = Solid Ag
Explanation:
a) Aqueous LiBr
This sample produces Hydrogen gas, because the H+ (conteined in the water) has a reduction potential higher than the Li+ from the salt. Therefore the hydrogen cation will reduce instead of the lithium one and form the gas.
b) Aqueous AgBr
This sample produces Solid Ag, because the Ag+ has a reduction potential higher than the H+ from the water. Therefore the silver cation will reduce instead of the hydrogen one and form the solid.
c) Molten LiBr
In a molten binary salt like LiBr there is only one cation present in the cathod. In this case the Li+, so it will reduce and form solid Li.
c) Molten AgBr
The same as the item above: there is only one cation present in the cathod. In this case the Ag+, so it will reduce and form solid Ag.
The amount of heat transferred in and out of the system is measured by calorimetry. The thermometer in the calorimeter is used to measure the temperature.
<h3>What are the parts of the calorimetry device?</h3>
The thermometer (A) is a device used to measure the final and the initial temperature of the water or any other liquid in a system. A metal vessel is a place where the reaction mixture is present.
In-vessel (B), water, and metal are placed before the beginning of the experiment. The styrofoam cup or the outer metal vessel (C) insulates the instrument, from regulating the heat transformation.
Therefore, part A measures the temperature of the reaction mixture.
Learn more about insulated containers here:
brainly.com/question/866735