Answer : The molar mass of solute is, 89.9 g/mol
Explanation : Given,
Mass of solute = 5.8 g
Mass of solvent (water) = 100 g
Formula used :

where,
= change in freezing point
= temperature of pure solvent (water) = 
= temperature of solution = 
= freezing point constant of water = 
m = molality
Now put all the given values in this formula, we get


Therefore, the molar mass of solute is, 89.9 g/mol
I just know it’s not conductive or brittle
Answer: Carbon dioxide concentrations are rising mostly because of the fossil fuels that people are burning for energy.
(1)Extra greenhouse gases in our atmosphere are the main reason that Earth is getting warmer.
(2)Greenhouse gases, such as carbon dioxide (CO2) and methane, trap the Sun's heat in Earth's atmosphere.
(3)It says that the 1997 Kyoto Protocol was an unmitigated success, with every single one of the 36 countries that signed up reducing their mean annual greenhouse gas emissions from 2008-2012 by an average of 5% relative to the levels seen in 1990.Jun 15, 2016 Many argue that Kyoto's failure is due to deficiencies in the structure of the agreement, such as the exemption of developing countries from reductions requirements, or the lack of an effective emissions trading scheme.by 2012
Explanation:
<u>Answer:</u> The equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
<u>Explanation:</u>
The equation used to calculate rate constant from given half life for first order kinetics:

where,
= half life of the reaction = 
Putting values in above equation, we get:

Rate law expression for first order kinetics is given by the equation:
![k=\frac{2.303}{t}\log\frac{[A_o]}{[A]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B%5BA_o%5D%7D%7B%5BA%5D%7D)
where,
k = rate constant = 
t = time taken for decay process
= initial amount of the sample = 20 grams
[A] = amount left after decay process = ? grams
Putting values in above equation, we get:
![0.5=\frac{2.303}{t}\log\frac{20}{[A]}](https://tex.z-dn.net/?f=0.5%3D%5Cfrac%7B2.303%7D%7Bt%7D%5Clog%5Cfrac%7B20%7D%7B%5BA%5D%7D)
![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)
Hence, the equation to calculate the mass of remaining isotope is ![[A]=\frac{20}{10^{-0.217t}}](https://tex.z-dn.net/?f=%5BA%5D%3D%5Cfrac%7B20%7D%7B10%5E%7B-0.217t%7D%7D)