1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jek_recluse [69]
3 years ago
13

What is the acceleration of a car that has a velocity of 20 m/s, and

Engineering
1 answer:
ella [17]3 years ago
7 0

Acceleration of Car = 10 ms⁻²

Explanation:

Step 1:

The basic formula of acceleration is a = (v-u)/t  ms⁻²

where, v- final velocity

            u- initial velocity

             t= time taken

Step 2:

Here v = 70 ms⁻¹

        u = 50  ms⁻¹

         t = 5 s

∴ a = ( 70 - 20)/5

a = 10 ms⁻²

You might be interested in
You guys are amazing :D
Sloan [31]
Ik i am thank you tho xoxo
3 0
3 years ago
Read 2 more answers
Water leaves a penstock (the flow path through a hydroelectric dam) at a velocity of 100 ft/s. How deep is the water behind the
Marysya12 [62]

Answer:

155fts

Explanation:

We apply the bernoulli's equation to get the depth of water.

We have the following information

P1 = pressure at top water surface = 0

V1 = velocity at too water surface = 0

X1 = height of water surface = h

Hf = friction loss = 0

P2 = pressure at exit = 0

V2 = velocity at exit if penstock = 100ft/s

X2 = height of penstock = 0

g = acceleration due to gravity = 32.2ft/s²

Applying these values to the equation

0 + 0 + h = 0 + v2²/2g +0 + 0

= h = 100²/2x32.2

= 10000/64.4

= 155.28ft

= 155

8 0
2 years ago
A non-licensed person may be the SOLE owner of a civil, electrical, or mechanical engineering business under which of the follow
kotegsom [21]

Answer:

(d) None. No provisions exist.

Explanation:

B&P Code § 6738 prohibits a non-licensed person from being the sole proprietor of an engineering business. The non-licensed can be a partner in an engineering business that offers civil, electrical, or mechanical services. It is mandatory that at least one licensed engineer must be a co-owner of the business.

5 0
3 years ago
Privacy settings allow account owners to decide who can
VLD [36.1K]
Access their accounts.

anyone can search for them online.
they only meet in person with who they choose.
no one can view their personal information (other than companies they give it to.)
6 0
3 years ago
3.3 Equation (2) for VCPP is rather difficult to prove at this time. Take it as a challenge to derive it as you learn increasing
podryga [215]

Answer:

For an RC integrator circuit, the input signal is applied to the resistance with the output taken across the capacitor, then VOUT equals VC. As the capacitor is a frequency dependant element, the amount of charge that is established across the plates is equal to the time domain integral of the current. That is it takes a certain amount of time for the capacitor to fully charge as the capacitor can not charge instantaneously only charge exponentially.

Therefore the capacitor current can be written as:

 

his basic equation above of iC = C(dVc/dt) can also be expressed as the instantaneous rate of change of charge, Q with respect to time giving us the following standard equation of: iC = dQ/dt where the charge Q = C x Vc, that is capacitance times voltage.

The rate at which the capacitor charges (or discharges) is directly proportional to the amount of the resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC integrator circuit is the time interval that equals the product of R and C.

Since capacitance is equal to Q/Vc where electrical charge, Q is the flow of a current (i) over time (t), that is the product of i x t in coulombs, and from Ohms law we know that voltage (V) is equal to i x R, substituting these into the equation for the RC time constant gives:

We have seen here that the RC integrator is basically a series RC low-pass filter circuit which when a step voltage pulse is applied to its input produces an output that is proportional to the integral of its input. This produces a standard equation of: Vo = ∫Vidt where Vi is the signal fed to the integrator and Vo is the integrated output signal.

The integration of the input step function produces an output that resembles a triangular ramp function with an amplitude smaller than that of the original pulse input with the amount of attenuation being determined by the time constant. Thus the shape of the output waveform depends on the relationship between the time constant of the circuit and the frequency (period) of the input pulse.

By connecting two RC integrator circuits together in parallel has the effect of a double integration on the input pulse. The result of this double integration is that the first integrator circuit converts the step voltage pulse into a triangular waveform and the second integrator circuit converts the triangular waveform shape by rounding off the points of the triangular waveform producing a sine wave output waveform with a greatly reduced amplitude.

RC Differentiator

For a passive RC differentiator circuit, the input is connected to a capacitor while the output voltage is taken from across a resistance being the exact opposite to the RC Integrator Circuit.

A passive RC differentiator is nothing more than a capacitance in series with a resistance, that is a frequency dependentTherefore the capacitor current can be written as:

 

 

device which has reactance in series with a fixed resistance (the opposite to an integrator). Just like the integrator circuit, the output voltage depends on the circuits RC time constant and input frequency.

Thus at low input frequencies the reactance, XC of the capacitor is high blocking any d.c. voltage or slowly varying input signals. While at high input frequencies the capacitors reactance is low allowing rapidly varying pulses to pass directly from the input to the output.

This is because the ratio of the capacitive reactance (XC) to resistance (R) is different for different frequencies and the lower the frequency the less output. So for a given time constant, as the frequency of the input pulses increases, the output pulses more and more resemble the input pulses in shape.

We saw this effect in our tutorial about Passive High Pass Filters and if the input signal is a sine wave, an rc differentiator will simply act as a simple high pass filter (HPF) with a cut-off or corner frequency that corresponds to the RC time constant (tau, τ) of the series network.

Thus when fed with a pure sine wave an RC differentiator circuit acts as a simple passive high pass filter due to the standard capacitive reactance formula of XC = 1/(2πƒC).

But a simple RC network can also be configured to perform differentiation of the input signal. We know from previous tutorials that the current through a capacitor is a complex exponential given by: iC = C(dVc/dt). The rate at which the capacitor charges (or discharges) is directly proportional to the amount of resistance and capacitance giving the time constant of the circuit. Thus the time constant of a RC differentiator circuit is the time interval that equals the product of R and C. Consider the basic RC series circuit below.

Explanation:

3 0
3 years ago
Other questions:
  • Air enters a horizontal, constant-diameter heating duct operating at steady state at 290 K, 1 bar, with a volumetric flow rate o
    15·2 answers
  • Number the statements listed below in the order that they would occur in engine operation. Then, label these stages as intake, c
    14·1 answer
  • What does carbon addition to iron do, what does it produce, how does it change properties, what are its reflections? Describe in
    12·1 answer
  • A ball thrown vertically upward from the top of a building of 60ft with an initial velocity of vA=35 ft/s. Determine (a) how hig
    8·1 answer
  • Energy.
    10·1 answer
  • 1. You are asked to write a report about one of the structures that Transportation Engineers
    9·1 answer
  • Select the correct answer.
    11·1 answer
  • How do you get your drivers lisnes when your 15
    8·1 answer
  • On a day in which the local atmospheric pressure is 99.5 kPa, answer each of the following: (a) Calculate the column height of m
    12·1 answer
  • The variation of the pressure of a fluid with density at constant temperature is known as the _____.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!