Answer: The exit temperature of the gas in deg C is
.
Explanation:
The given data is as follows.
= 1000 J/kg K, R = 500 J/kg K = 0.5 kJ/kg K (as 1 kJ = 1000 J)
= 100 kPa,
We know that for an ideal gas the mass flow rate will be calculated as follows.
or, m =
=
= 10 kg/s
Now, according to the steady flow energy equation:
= 5 K
= 5 K + 300 K
= 305 K
= (305 K - 273 K)
=
Therefore, we can conclude that the exit temperature of the gas in deg C is
.
Answer:
A)
It should be Non- toxic
It should possess high Thermal conductivity
It should have the Required Thermal diffusivity
B)
- stoneware : This material has good thermal diffusivity and it is quite affordable and it is used in making pizza stones
- porcelain: mostly used for mugs and it is non-toxic
- Pyrex : posses good thermal conductivity used in oven
C) All the materials are suitable because they serve different purposes when making modern kitchen cookware
Explanation:
A) characteristics required of a ceramic material to be used as a kitchen cookware
- It should be Non- toxic
- It should possess high Thermal conductivity
- It should have the Required Thermal diffusivity
B) comparison of three ceramic materials as to their relative properties
- stoneware : This material has good thermal diffusivity and it is quite affordable and it is used in making pizza stones
- porcelain: mostly used for mugs and it is non-toxic
- Pyrex : posses good thermal conductivity used in ovens
C) material most suitable for the cookware.
All the materials are suitable because they serve different purposes when making modern kitchen cookware
Answer:
Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder.
Explanation:
Answer:
Explanation:
In Engineering and Physics a Phasor That is a portmanteau of phase vector, is a complex number that represents a sinusoidal function whose Amplitude (A), Angular Frequency (ω), and Initial Phase (θ) are Time-invariant.
For the step by step solution to the question you asked, go through the attached documents.