1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IRINA_888 [86]
3 years ago
11

Describe how sound waves are produced by the drum and then heard.

Physics
1 answer:
Tamiku [17]3 years ago
4 0

Answer:

The material stretched across the drum vibrates to produce the sound waves.

Explanation:

A drum is one of the oldest musical instrument made by man. It is made of a hollow body over which a material such as skin is stretched. When a drum is struck with a stick, the material vibrates up and down. This makes the air above the drum to contract and relax rhythmically resulting in soundwaves. The soundwaves travel through air to reach our ears where they are heard.

The quality of sound produced by  a drum is affected by its shape. A larger drum produces a lower pitched sound.

You might be interested in
What situation would give you a mechanical advantage? *
const2013 [10]
D. Using a fixed-pulley system
3 0
3 years ago
Which of the following wavelengths will produce standing waves on a string that is 3.5 m long?
denpristay [2]

In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

\lambda=\frac{2}{n} L


The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

\lambda=\frac{2}{1} \cdot 3.5 m=7.0 m


The wavelength of the 2nd harmonic is:

\lambda=\frac{2}{2} \cdot 3.5 m=3.5 m


The wavelength of the 4th harmonic is:

\lambda=\frac{2}{4} \cdot 3.5 m=1.75 m


It is not possible to find any integer n such that \lambda=5 m, therefore the correct options are A, B and D.

3 0
3 years ago
Read 2 more answers
A dolphin in an aquatic show jumps straight up out of the water at a velocity of 15.0 m/s. (a) List the knowns in this problem.
astra-53 [7]

Answer:

a)

Y0 = 0 m

Vy0 = 15 m/s

ay = -9.81 m/s^2

b) 7.71 m

c) 3.06 s

Explanation:

The knowns are that the initial vertical speed (at t = 0 s) is 15 m/s upwards. Also at that time the dolphin is coming out of the water, so its initial position is 0 m. And since we can safely assume this happens in Earth, the acceleration is the acceleration of gravity, which is 9.81 m/s^2 pointing downwards

Y(0) = 0 m

Vy(0) = 15 m/s

ay = -9.81 m/s^2 (negative because it points down)

Since acceleration is constant we can use the equation for uniformly accelerated movement:

Y(t) = Y0 + Vy0 * t + 1/2 * a * t^2

To find the highest point we do the first time derivative (this is the speed:

V(t) = Vy0 + a * t

We equate this to zero

0 = Vy0 + a * t

0 = 15 - 9.81 * t

15 = 9.81 * t

t = 0.654 s

At this time it will have a height of:

Y(0.654) = 0 + 15 * 0.654 - 1/2 * 9.81 * 0.654^2 = 7.71 m

The doplhin jumps and falls back into the water, when it falls again it position will be 0 again. So we can equate the position to zero to find how long it was in the air knowing that it started the jump at t = 0s.

0 = Y0 + Vy0 * t + 1/2 * a * t^2

0 = 0 + 15 * t - 1/2 * 9.81 t^2

0 = 15 * t - 4.9 * t^2

0 = t * (15 - 4.9 * t)

t1 = 0 This is the moment it jumped into the air

0 = 15 - 4.9 * t2

15 = 4.9 * t2

t2 = 3.06 s This is the moment when it falls again.

3.06 - 0 = 3.06 s

5 0
3 years ago
We start with 5.00 moles of an ideal monatomic gas with an initial temperature of 128 ∘C. The gas expands and, in the process, a
o-na [289]

Answer:

The final temperature of the gas is <em>114.53°C</em>.

Explanation:

Firstly, we calculate the change in internal energy, ΔU from the first law of thermodynamics:

ΔU=Q - W

ΔU = 1180 J - 2020 J = -840 J

Secondly, from the ideal gas law, we calculate the final temperature of the gas, using the change in internal energy:

ΔU=\frac{3}{2} nRΔT

ΔU=\frac{3}{2} nR(T_{2} -T_{1} )

Then we make the final temperature, T₂, subject of the formula:

T_{2} =\frac{2ΔU}{3nR} +T_{1}

T_{2} =\frac{2(-840J)}{(3)(5)(8.314J/mol.K)} +128 deg.C

T_{2} =114.53 deg.C

Therefore the final temperature of the gas, T₂, is 114.53°C.

7 0
4 years ago
Which of the following is true A. If the sum of the external forces on an object is zero, then the object must be in equilibrium
yanalaym [24]

Answer:

A. If the sum of the external forces on an object is zero, then the object must be in equilibrium

Explanation:

Equilibrium, in physics, the condition of a system when neither its state of motion nor its internal energy state tends to change with time.

For a single particle, equilibrium arises if the vector sum of all forces acting upon the particle is zero.

the object is at equilibrium, then the net force acting upon the object should be 0 Newton. Thus, if all the forces are added together as vectors, then the resultant force (the vector sum) should be 0 Newton.

There are three types of equilibrium: stable, unstable, and neutral

3 0
3 years ago
Other questions:
  • Make the following conversion. 34.9 cL = _____ hL. 0.349 0.0349 0.00349 349,000
    12·1 answer
  • Compare and contrast the molecular structure of cleaning bleach and carbon monoxide
    14·1 answer
  • A rock is thrown at a window that is located 18.0 m above the ground. The rock is thrown at an angle of 40.0° above horizontal.
    9·1 answer
  • A system of releases 125kJ of heat while 104kJ of work is done in the system. Calcilate the change om imternal energy (in kJ)
    9·1 answer
  • PLEASE HELP!!! URGENTTT
    7·1 answer
  • Please help me!!!.......​
    5·1 answer
  • Which types of light are absorbed by genetic material?
    15·1 answer
  • When a mule stops suddenly, the packages
    9·1 answer
  • Please help as soon as possible! I will give Brainliest! I just need to know the answers to this diagram.
    9·1 answer
  • What are 5 examples of expansion and contraction? What are their benefits?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!