Answer:
The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, <u>the attraction or repulsion becomes weaker</u>, decreasing to one-fourth of the original value.
Explanation:
Coulomb’s law, mathematical description of the electric force between charged objects. Formulated by the 18th-century French physicist Charles-Augustin de Coulomb, it is analogous to Isaac Newton’s law of gravity.
Both gravitational and electric forces decrease with the square of the distance between the objects, and both forces act along a line between them. In Coulomb’s law, however, the magnitude and sign of the electric force are determined by the electric charge, rather than the mass, of an object. Thus, charge determines how electromagnetism influences the motion of charged objects. Charge is a basic property of matter. Every constituent of matter has an electric charge with a value that can be positive, negative, or zero.
Coulomb's Law says that the force between 2 charges is proportional to the product of the quantities of charge on each and inversely proportional to the square of the distance between them. The formula for Coulomb's Law is .
is the force.
is the Coulomb's constant ().
is the electric charge of object 1.
is the electric charge of object 2.
is the distance between the two charges.
Electric force is inversely proportional to () instead of (). As the distance between charges increases, the electric force decreases by a factor of .