Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm
Answer:
Explanation:
kinetic energy required = 1.80 MeV
= 1.8 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 2.88 x 10⁻¹³ J
If v be the velocity of proton
1/2 x mass of proton x v² = 2.88 x 10⁻¹³
= .5 x 1.67 x 10⁻²⁷ x v² = 2.88 x 10⁻¹³
v² = 3.45 x 10¹⁴
v = 1.86 x 10⁷ m /s
If V be the potential difference required
V x e = kinetic energy . where e is charge on proton .
V x 1.6 x 10⁻¹⁹ = 2.88 x 10⁻¹³
V = 1.8 x 10⁶ volt .
In this question, you're determining the time (t) taken for an object to fall from a distance (d).
The equation to represent this is:
Time equals the square root of 2 times the distance divided by the gravitational force of earth.
In equation from it looks like this (there isn't an icon to represent square root so just pretend like there's a square root there):
t = 2d/g (square-rooted)
d = 8,848m and g = 9.8m/s
Now plug in the information we have:
t = 2 x 8,848m/9.8m/s (square-rooted)
The first step is to multiply 2 times 8,848m:
t = 17,696m/9.8m/s (square-rooted)
Now divide 9.8m/s by 17,696m (note that the two m's (meters) cancels out leaving you with only s (seconds):
t = 1805.72s (square-rooted)
Now for the last step, find the square root of the remaining number:
t = 42.5s
So the time it takes the ball to drop from the height (distance) of 8,848 meters, and falling with the gravitational pull of 9.8 meters per second is 42.5 seconds.
I hope this helps :)