It's called "utter disregard for the safety and welfare
of the people standing at the bottom of the hill".
Answer:

Explanation:
= Permittivity of free space = 
A = Area
h = Altitude = 600 m
Electric flux through the top would be
(negative as the electric field is going into the volume)
At the bottom

Total flux through the volume

Electric flux is given by

Charge per volume is given by

The volume charge density is 
Answer:
E = hv
Explanation:
- The photoelectric effect is a phenomenon when the electromagnetic waves of a particular wavelength strike on the metal plate like zinc, it ejects the free electrons.
- The ejected electrons have the kinetic energy and this energy is responsible for the electric energy.
- The kinetic energy of the emitted electrons is linked with the frequency of the incident rays.
- If the rays hitting the metal plate is below the minimum required threshold value, the photoelectrons are not ejected.
- The photoelectric equation is given by
E = hν - ∅
Where, ∅ is the minimum energy required to remove an electron.
Answer:
v₃ = 3.33 [m/s]
Explanation:
This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.
In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

where:
m₁ = mass of the car = 1000 [kg]
v₁ = velocity of the car = 10 [m/s]
m₂ = mass of the truck = 2000 [kg]
v₂ = velocity of the truck = 0 (stationary)
v₃ = velocity of the two vehicles after the collision [m/s].
Now replacing:
![(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]](https://tex.z-dn.net/?f=%281000%2A10%29%2B%282000%2A0%29%3D%281000%2B2000%29%2Av_%7B3%7D%5C%5Cv_%7B3%7D%3D3.33%5Bm%2Fs%5D)
The answer to this question should be: The accuracy in measuring its velocity decreases
Hope I helped