Answer:
1.1648×10⁻¹¹ N
Explanation:
Using
F = qvBsinФ..................... Equation 1
Where F = Force on the proton, q = charge, v = velocity, B = magnetic Field, Ф = angle between the magnetic Field and the velocity.
Note: The angle between v and B = 90°
Given: v = 5.2×10⁷ m/s, B = 1.4 T, q = 1.6×10⁻¹⁹ C, Ф = 90°
Substitute into equation 1
F = 1.6×10⁻¹⁹(5.2×10⁷)(1.4)sin90°
F = 11.648×10⁻¹²
F = 1.1648×10⁻¹¹ N.
Well I think B hope this helps
Answer:
3335400 N/m² or 483.75889 lb/in²
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
A = Area = 1.5 cm²
m = Mass of woman = 51 kg
F = Force = mg
When we divide force by area we get pressure



The pressure exerted on the floor is 3335400 N/m² or 483.75889 lb/in²
Answer:
sweeps out equal areas in equal times.
Explanation:
As we know that there is no torque due to Sun on the planets revolving about the sun
so we will have

now we have

now we also know that

so rate of change in area is given as

so we will have


since angular momentum and mass is constant here so
all planets sweeps out equal areas in equal times.