Answer:
0.8 seconds
Explanation:
F=ma
Let x be the seconds the force is applied.
m = 20kg
F = 50 Newtons (kg*m/sec^2)
acceleration, a, is provided for x seconds to increase the speed from 1 m/s to 3 m/s, an increase of 2m/s
Let's calculate the acceleration of the cart:
F=ma
(50 kg*m/s^2) = (20kg)*a
a = 2.5 m/s^2
---
The acceleration is 2.5 m/s^2. The cart increases speed by 2.5 m/s every second.
We want the number of seconds it takes to add 2.0 m/sec to the speed:
(2.5 m/s^2)*x = 2.0 m/s
x = (2.0/2.5) sec
x = 0.8 seconds
Gamma rays because it has more penetrating power and frequency but shorter wavelength.
Answer:
changing the magnetic field more rapidly
Explanation:
According to Faraday's law, whenever there is a change in the magnetic lines of force, it leads the production of induced emf. The magnitude of induced emf is proportional to to the rate of change of flux.
Hence if the magnetic field inside a loop of wire is changed rapidly, the magnitude of induced emf increases in accordance with Faraday's law of electromagnetic induction stated above when the magnetic field is changed more rapidly, hence the answer.
Answer:
A
Explanation:
because newton's second law states that if a resultant force acts on an object then, it will accelerate in the direction of the resultant force
Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.