1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N. Details about number of atoms can be found below.
How to calculate number of atoms?
The number of atoms of a substance can be calculated by multiplying the number of moles of the substance by Avogadro's number.
However, the number of moles of oxygen in glycine can be calculated using the following expression:
Molar mass of C₂H5O2N = 75.07g/mol
Mass of oxygen in glycine = 32g/mol
Hence; 32/75.07 × 7.51 = 3.2grams of oxygen in glycine
Moles of oxygen = 3.2g ÷ 16g/mol = 0.2moles
Number of atoms of oxygen = 0.2 × 6.02 × 10²³ = 1.205 × 10²³ atoms
Therefore, 1.205 × 10²³ atoms of oxygen will be present in 7.51 grams of glycine with formula C₂H5O2N.
Learn more about number of atoms at: brainly.com/question/8834373
#SPJ1
Answer:
Consequently, what happens when gas obtained by heating slaked lime and ammonium chloride is passed through copper sulphate solution? The HCl in the gas mixture will form hydrochloric and the H+ will react with some of the NH3(aq), forming NH4^+, and with some of the SO4^2-, forming HSO4^-.
Density is the measure of a material's mass per unit volume, used in many aspects of science, engineering and industry. Density can be calculated by dividing an object's mass by its volume. Since different materials have different densities, measuring an object's density can help determine which materials are in it. Finding the density of a metal sample can help to determine its purity.When measuring liquids and regularly shaped solids, mass and volume can be discovered by direct measurement and these two measurements can then be used to determine density. Using a pan balance, determine and record the mass of an object in grams. Using a vernier caliper or ruler, measure the length, depth and width of the object in centimeters. Multiply these three measurements to find the volume in cubic centimeters. Divide the object's mass by its volume to determine its density. Density is expressed in grams per cubic centimeter or grams per milliliter.
(this can be split into two paragraphs)
Answer:
Explanation:
Num of molecules = num of moles * Avogadro's constant (6.02* 10^23)
But num of moles = reacting mass / molar mass
Molar mass of H20= 2*1 + 16 = 2+16 = 18g
Reacting mass of H20 = 0.55g
Therefore, num of moles of H20 = 0.55g/18g = 0.031 moles
Therefore, num of molecules of H20 = 0.031 * 6.02*10^23
= 1.87*10^22 molecules of H20
Answer:
2.86g
Explanation:
Mass of HCl = 2.87g
Mass of water = 3.75g
Mass of NaCl = 1.98g
Unknown:
Mass of NaOH reacted = ?
Solution:
The reaction expression is given as:
HCl + NaOH → NaCl + H₂O
According to the law of conservation of mass, the mass of reactants and products must be the same.
Mass of HCl + Mass of NaOH = Mass of NaCl + Mass of H₂O
2.87g + Mass of NaOH = 1.98g + 3.75g
Mass of NaOH = 1.98g + 3.75g - 2.87g = 2.86g