Answer:
2 moles of Sn are produced when 4 moles of H2(g) are consumed completely
Explanation:
to determine the number of moles of sn (l) produced when 4.0 moles of H2 (g) is consumed completely.
First, find the number of moles of H2 consumed by taking this as limiting reagent.

Then find the moles of Sn (l) taking into account the stoichiometric relationship between H2(g) and Sn(l). 2:1
(s) + 2
(g) ⇒ Sn(l) + 2
(g)

∴2 moles of Sn are produced when 4 moles of H2(g) are consumed completely.
A lot of molecules will be in 2.570 moles of H2
<span>There are three atoms of Sn (Stannous or Tin) in</span> 356.13 g of Sn.
<span>One atom of Sn has the atomic mass (m</span>ₐ<span>) of </span>118,71u which means:
356.13/118.71=3 atoms of Sn
The mass number (symbol A) also called atomic mass number or nucleon number is the total number of protons and neutrons in an atomic nucleus. It determines the atomic mass of atoms and it is in the periodic table.
Change the places of 'acts against the motion of an object' and 'causes an object to change speed or direction'