Answer:
D). energy resulting from the attraction between two masses.
Explanation:
Answer:
Speed of the satellite V = 6.991 × 10³ m/s
Explanation:
Given:
Force F = 3,000N
Mass of satellite m = 500 kg
Mass of earth M = 5.97 × 10²⁴
Gravitational force G = 6.67 × 10⁻¹¹
Find:
Speed of the satellite.
Computation:
Radius r = √[GMm / F]
Radius r = √[(6.67 × 10⁻¹¹ )(5.97 × 10²⁴)(500) / (3,000)
Radius r = 8.146 × 10⁶ m
Speed of the satellite V = √rF / m
Speed of the satellite V = √(8.146 × 10⁶)(3,000) / 500
Speed of the satellite V = 6.991 × 10³ m/s
Answer:
Answer: <u>Height</u><u> </u><u>is</u><u> </u><u>0</u><u>.</u><u>2</u><u>0</u><u>4</u><u> </u><u>m</u>
Explanation:
At the highest point, it is called the maximum height.
• From third newton's equation of motion:
![{ \rm{ {v}^{2} = {u}^{2} + 2gs}}](https://tex.z-dn.net/?f=%7B%20%5Crm%7B%20%7Bv%7D%5E%7B2%7D%20%20%3D%20%20%7Bu%7D%5E%7B2%7D%20%20%2B%202gs%7D%7D%20)
• At maximum height, v is zero
• u is initial speed
• g is -9.8 m/s²
• s is the height
![{ \rm{0 {}^{2} = {2}^{2} - (2 \times 9.8 \times s)}} \\ \\ { \rm{4 = 19.6s}} \\ \\ { \rm{s = 0.204 \: m}}](https://tex.z-dn.net/?f=%7B%20%5Crm%7B0%20%7B%7D%5E%7B2%7D%20%20%3D%20%20%7B2%7D%5E%7B2%7D%20%20%20-%20%20%282%20%5Ctimes%209.8%20%5Ctimes%20s%29%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7B4%20%3D%2019.6s%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Crm%7Bs%20%3D%200.204%20%5C%3A%20m%7D%7D)
Answer:
50 N
Explanation:
Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:
The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.
The horizontal component of the forces:
F₁ + F₂ = -40N + F₂ = 0
F₂ = 40N
The vertical component of the forces:
F₁ + F₂ - mg = 0 + F₂ - mg = 0
F₂ = mg
If I assume the gravitational constant g = 10 m/s²:
F₂ = (3 kg) * (10 m/s²) = 30N
Adding the horizontal and vertical components of the force F₂:
F₂ = √((40N)² + (30N)²) = 50N
Answer:10cm3
Explanation:Volume Al = (27g Al)/(2.70g/cm3 Al) = 10cm3 Al. So, 27g of Al has a volume of 10cm3. *