1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mice21 [21]
3 years ago
13

If angle A is a complement of angle B, angle B and angle C are vertical angles, and the supplement of C has a measure of 140°. F

ind the measure of A.
Engineering
1 answer:
Over [174]3 years ago
7 0

Answer:

50°

Explanation:

Complementary angles add up to 90°.

Supplementary angles add up to 180°.

Vertical angles are equal.

A + B = 90°

B = C

C = 180° − 140°

C = 40°

B = 40°

A = 50°

You might be interested in
The statement that is NOT true about the concept of a boundary layer on an object is: a. the Reynolds number is greater than uni
Ilya [14]

Answer:

Option E

Explanation:

All the given statements are true except the velocity gradients normal to the flow direction are small since these are not normally small. It's true that viscous effects are present only inside the boundary layer and the fluid velocity equals the free stream velocity at the edge of the boundary layer. Moreover, Reynolds number is greater than unity and the fluid velocity is zero at the surface of the object.

5 0
2 years ago
What is hardness and how is it generally tested?
drek231 [11]

Answer:

Hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

Explanation:

Hardness of a material is understood as the resistance that the material opposes to its permanent surface plastic deformation by scratching or penetration. It is always true that the hardness of a material is inversely proportional to the footprint that remains on its surface when a force is applied.

In this sense, the hardness of a material can also be defined as that property of the surface layer of the material to resist any elastic deformation, plastic or destruction due to the action of local contact forces caused by another body (called indenter or penetrator), harder, of certain shape and dimensions, which does not suffer residual deformations during contact.

That is, hardness is understood as the property of materials in general to resist the penetration of an indenter under load, so that the hardness represents the resistance of the material to the plastic deformation located on its surface.

The following conclusions can be drawn from the previous definition of hardness:  

  1) hardness, by definition, is a property of the surface layer of the material, and is not a property of the material itself;  

  2) the methods of hardness by indentation presuppose the presence of contact efforts, and therefore, the hardness can be quantified within a scale;

  3) In any case, the indenter or penetrator must not undergo residual deformations during the test of hardness measurement of the body being tested.

To determine the hardness of the materials, durometers with different types of tips and ranges of loads are used on the various materials. Below are the most commonly used tests to determine the hardness of the materials.

   Rockwell hardness :

It refers to the Rockwell hardness test, a method with which the hardness or resistance of a material to be penetrated is calculated. It is characterized by being a fast and simple method that can be applied to all types of materials. An optical reader is not required.

    Brinell hardness :

Brinell hardness is a scale that is used to determine the hardness of a material through the indentation method, which consists of penetrating with a hardened steel ball tip into the hard material, a load and for a certain time.  

This test is not very precise but easy to apply. It is one of the oldest and was proposed in 1900 by Johan August Brinell, a Swedish engineer.

    Vickers hardness:

Vickers hardness is a test that is used in all types of solid and thin or soft materials. In this test, a square-shaped pyramid-shaped diamond and a   136° vertex angle are placed on the penetrating equipment.

In this test the hardness measurement is performed by calculating the diagonal penetration lengths.

However, its result is not read directly on the equipment used, therefore, the following formula must be applied to determine the hardness of the material: HV = 1.8544 · F / (dv2).

3 0
2 years ago
Xyxyydfufggivivihogcufuf​
Genrish500 [490]

Answer:

ummm why is you doing this

Explanation:

It doesnt make sense.

7 0
3 years ago
A student engineer is given a summer job to find the drag force on a new unmaned aerial vehicle that travels at a cruising speed
yan [13]

Answer:

b. 1232.08 km/hr

c. 1.02 kn

Explanation:

a) For dynamic similar conditions, the non-dimensional terms R/ρ V2 L2 and ρVL/ μ should be same for both prototype and its model. For these non-dimensional terms , R is drag force, V is velocity in m/s, μ is dynamic viscosity, ρ is density and L is length parameter.

See attachment for the remaining.

3 0
3 years ago
There are two identical oil tanks. The level of oil in Tank A is 12 ft and is drained at the rate of 0.5 ft/min. Tank B contains
Luba_88 [7]

Answer:

  16 minutes

Explanation:

This is an example of a class of problems in which two quantities start with different initial values and change at different rates. In such problems, the rates of change are generally ones that cause the values to converge.

The question usually asks when the values will be the same. The generic answer is, "when the difference in rates makes up the difference in initial values."

Here the tanks differ in initial fill height by 12 -8 = 4 ft. The rates of change differ by 0.5 -0.25 = 0.25 ft/min. The more filled tank is draining faster (important), so the fill heights will converge after ...

  (4 ft)/(0.25 ft/min) = 16 min

The level in the two tanks will be the same after 16 minutes.

__

<em>Additional comment</em>

The oil levels at that time will be 4 ft.

You can write two equations for height:

  y = 12 -0.5x . . . . . . . height in feet after x minutes (tank A)

  y = 8 -0.25x . . . . . .  height in feet after x minutes (tank B)

These will be equal when ...

  y = y

  12 -0.5x = 8 -0.25x

  4 = 0.25x . . . . . . . . . . add 0.5x -8

  16 = x . . . . . . . . . . . . multiply by 4 . . . . time to equal height

The graph shows when the tanks will have equal heights and when they will be drained.

4 0
2 years ago
Other questions:
  • A plate clutch is used to connect a motor shaft running at 1500rpm to shaft 1. The motor is rated at 4 hp. Using a service facto
    7·1 answer
  • A steady‐flow gas furnace supplies hot air at a rate of 850 cfm and conditions of 120F and 1.00 atm. The air splits into two bra
    14·1 answer
  • Aerospace engineers who work for certain government agencies are often required to have security clearance. Explain two reasons
    9·1 answer
  • Which one of the following is a list of devices from least efficient to most efficient
    9·1 answer
  • A 24-tooth gear has AGMA standard full-depth involute teeth with diametral pitch of 12. Calculate the pitch diameter, circular p
    5·2 answers
  • A 220-V electric heater has two heating coils that can be switched such that either coil can be used independently or the two ca
    15·1 answer
  • Which investigative process is most helpful for learning about past societies?
    10·1 answer
  • A long corridor has a single light bulb and two doors with light switch at each door. design logic circuit for the light; assume
    8·1 answer
  • El tiempo hasta que falle un sistema informático sigue una distribución Exponencial con media de 600hs. (Utilice 3 decimales par
    13·1 answer
  • on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!