1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
IgorC [24]
2 years ago
10

I will mark you brainlist. How can you use a tuning fork to tune a piano?

Physics
1 answer:
Phoenix [80]2 years ago
6 0

A tuning fork's job is to establish a single note that everybody can tune to.

Most tuning forks are made to vibrate at 440 Hz, a tone known to musicians as "concert A." To tune a piano, you would start by playing the piano's "A" key while ringing an "A" tuning fork. If the piano is out of tune, you'll hear a distinct warble between the note you're playing and the note played by the tuning fork; the further apart the warbles, the more out-of-tune the piano. By either tightening or loosening the piano's strings, you reduce the warble until it's in line with the tuning fork. Once the "A" key is in tune, you would then adjust all of the instrument's 87 other keys to match. The method is much the same for most other instruments. Whether you're tuning a clarinet or guitar, simply play a concert A and adjust your instrument accordingly

Explanation:

It can be a bit tricky to hold a tuning fork while manipulating an instrument, which is why some musicians decide to clench the base of a ringing tuning fork in their teeth. This has the unique effect of transmitting sound through your bones, allowing your brain to "hear" the tone through your jaw. According to some urban legends, touching your teeth with a vibrating tuning fork is enough to make them explode. It's a myth, obviously, but if you have a cavity or a chipped tooth, you'll quickly find this method to be unbelievably painful.

Luckily, you can also buy tuning forks that come mounted on top of a resonator, a hollow wooden box designed to amplify a tuning fork's vibrations. In 1860, a pair of German inventors even devised a battery-powered tuning fork that musicians didn't need to ring again and again

You might be interested in
If you were on a decision making board with the task of choosing which innovation to fund, what criteria would you use to make y
faust18 [17]

Explanation:

The criteria for decision making would be

1. I would fund for the school of young diabetics, for the sole purpose of them leaning and being motivated for a healthy lifestyle.

2. I would also fund for new and improved insulin pumps as old ones cause multiple problems.

3 0
3 years ago
Given a particle that has the velocity v(t) = 3 cos(mt) = 3 cos (0.5t) meters, a. Find the acceleration at 3 seconds. b. Find th
dalvyx [7]

Answer:

Explanation:

a )  V = 3 cos(0.5t)

differentiating with respect to t

dv /dt = -3 x .5 sin0.5t

= -1.5 sin0.5t.

acceleration = - 1.5 sin 0.5t

when t = 3 s

acceleration = - 1.5 sin 1.5

= - 1.496 ms⁻²

v = 3 cos.5t

b )  dx/dt = 3 cos 0.5 t

dx = 3 cos 0.5 t dt

integrating on both sides

x = 3 sin .5t / .5

x = 6 sin0.5t

At t = 2 s

x = 6 sin 1

x = 5.05 m

4 0
3 years ago
If Mrs. Reichelt throws a chromebook, because it won't login correctly, with a force of 8N, and the chromebook accelerates at 5m
suter [353]

Answer:

1.6 kg

Step-by-step Solution:

Since Force = mass × acceleration we have:

F = 8N

a= 5 m/s^2

m = ?

By plugging the values above into F=ma we obtain:

F=ma\\\\8=m(5)\\\\\frac{8}{5}=\frac{m(5)}{5}\\\\m=\frac{8}{5}=1.6

Therefore, the Chromebook has a mass of 1.6 kilograms.



7 0
3 years ago
Which statement about the heliocentric theory is correct?
finlep [7]

Answer:

4 should be right

Explanation:

6 0
3 years ago
Read 2 more answers
To determine the pressure in a fluid at a given depth with the air-filled cartesian diver, we can employ Boyle's law, which stat
aniked [119]

Answer:

The pressure at this depth is 1.235\cdot P_{atm}.

Explanation:

According to the statement, the uncompressed fluid stands at atmospheric pressure. By Boyle's Law we have the following expression:

\frac{P_{2}}{P_{1}} = \frac{V_{1}}{V_{2}} (1)

Where:

V_{1}, V_{2} - Initial and final volume.

P_{1}, P_{2} - Initial and final pressure.

If we know that V_{2} = 0.81\cdot V_{1}, then the pressure ratio is:

\frac{P_{2}}{P_{1}} = 1.235

If P_{1} = P_{atm}, then the final pressure of the gas is:

P_{2} = 1.235\cdot P_{atm}

The pressure at this depth is 1.235\cdot P_{atm}.

6 0
3 years ago
Other questions:
  • Two parallel plates of area 2.34*10-3 M2 have 7.07*10-7C of charge placed on them. A6.62*10-5C charge q1 is placed between the p
    14·1 answer
  • A vertically polarized beam of light of intensity 100 W/m2 passes through two ideal polarizers. The transmission axis of the fir
    9·1 answer
  • so i did this thing and idk how it happened but basically i put foil inside the tip of my computer charger while it was charging
    6·1 answer
  • The law of reflection states that light is reflected off a surface at the same angle that light hits the surface. The arrow on t
    13·2 answers
  • Cardiorespiratory fitness improves the efficiency of the cardiovascular and the respiratory systems in delivering oxygen to the
    11·1 answer
  • Look at the graph below. Which elements together make up seven percent of the Earth’s crust? calcium and iron calcium and sodium
    5·1 answer
  • Party hearing. As the number of people at a party increases, you must raise your voice for a listener to hear you against the ba
    14·1 answer
  • A steel rod has a length of 0.2 cm at 30 degrees C, what will be its length at 60 degrees C?
    11·1 answer
  • in a mass spectrometer ionized molecules are accelerated from rest through a potential difference V into a uniform magnetic fiel
    12·1 answer
  • PLZ HELP NOW
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!