A mountain range because an ocean ridge is an underwater mountain hope this helps you
The bicyclist accelerates with magnitude <em>a</em> such that
25.0 m = 1/2 <em>a</em> (4.90 s)²
Solve for <em>a</em> :
<em>a</em> = (25.0 m) / (1/2 (4.90 s)²) ≈ 2.08 m/s²
Then her final speed is <em>v</em> such that
<em>v</em> ² - 0² = 2<em>a</em> (25.0 m)
Solve for <em>v</em> :
<em>v</em> = √(2 (2.08 m/s²) / (25.0 m)) ≈ 10.2 m/s
Convert to mph. If you know that 1 m ≈ 3.28 ft, then
(10.2 m/s) • (3.28 ft/m) • (1/5280 mi/ft) • (3600 s/h) ≈ 22.8 mi/h
Answer:
B. 6 cm
Explanation:
First, we calculate the spring constant of a single spring:

where,
k = spring constant of single spring = ?
F = Force Applied = 10 N
Δx = extension = 4 cm = 0.04 m
Therefore,

Now, the equivalent resistance of two springs connected in parallel, as shown in the diagram, will be:

For a load of 30 N, applying Hooke's Law:

Hence, the correct option is:
<u>B. 6 cm</u>
Answer
22.5 m/s
Explanation
We shall use the trigonometric ratio cosine to find the horizontal component.
cos = adjacent/hypotenuse
Adjacent is the horizontal and hypotenuse is the fly speed.
cos 30° = horizontal / 26
horizontal velocity = 26 × cos 30°
= 26 × 0.866
= 22.5166
= 22.5 m/s
Answer:
Explanation:
When 2 gms of steam condenses to water at 100 degree latent heat of vaporization is releases which is calculated as follows
Heat released = mass x latent heat of vaporization
= 2 x 2260 = 4520 J
When 2 gms of water at 100 degree is cooled to ice water at zero degree heat is releases which is calculated as follows
Heat released = mass x specific heat x( 100-0)
= 2 x 4.2 x 100 = 840 J
When 2 gms of water at zero degree condenses to ice at zero degree latent heat of fusion is releases which is calculated as follows
Heat released = mass x latent heat of fusion
= 2 x 334 = 668 J
When 2 grams of steam at 100 degrees Celsius turns to ice at 0 degrees Celsius heat released will be sum of all the heat released as mentioned above ie
4520 + 840 +668 = 6028 J