Answer:
R (120) = 940Ω
Explanation:
The variation in resistance with temperature is linear in metals
ΔR (T) = R₀ α ΔT
where α is the coefficient of variation of resistance with temperature, in this case α = -0,0005 / ºC
let's calculate
ΔR = 1000 (-0,0005) (120-0)
ΔR = -60
Ω
ΔR = R (120) + R (0) = -60
R (120) = -60 + R (0)
R (120) = -60 + 1000
R (120) = 940Ω
The question is incomplete. The complete question is :
A viscoelastic polymer that can be assumed to obey the Boltzmann superposition principle is subjected to the following deformation cycle. At a time, t = 0, a tensile stress of 20 MPa is applied instantaneously and maintained for 100 s. The stress is then removed at a rate of 0.2 MPa s−1 until the polymer is unloaded. If the creep compliance of the material is given by:
J(t) = Jo (1 - exp (-t/to))
Where,
Jo= 3m^2/ GPA
to= 200s
Determine
a) the strain after 100's (before stress is reversed)
b) the residual strain when stress falls to zero.
Answer:
a)-60GPA
b) 0
Explanation:
Given t= 0,
σ = 20Mpa
Change in σ= 0.2Mpas^-1
For creep compliance material,
J(t) = Jo (1 - exp (-t/to))
J(t) = 3 (1 - exp (-0/100))= 3m^2/Gpa
a) t= 100s
E(t)= ΔσJ (t - Jo)
= 0.2 × 3 ( 100 - 200 )
= 0.6 (-100)
= - 60 GPA
Residual strain, σ= 0
E(t)= Jσ (Jo) ∫t (t - Jo) dt
3 × 0 × 200 ∫t (t - Jo) dt
E(t) = 0
Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".
F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.
Answer:
The current decreases.
Explanation:
Current and resistance are inversely proportional. The equation connecting current, resistance and voltage is , where V is voltage, I is current and R is resistance.
Rearranging this equation, you get:
and
If the value of voltage in both equations remains constant, and the value of R decreases, the value of I will increase. Conversely, if in the second equation , the value of V remains constant the value of I decreases, then the value of R, resistance will increase.
Thus, it can be seen that the current will decrease as resistance increases and vice versa.
Answer:
The speed of the sled is 3.56 m/s
Explanation:
Given that,
Mass = 2.12 kg
Initial speed = 5.49 m/s
Coefficient of kinetic friction = 0.229
Distance = 3.89 m
We need to calculate the acceleration of sled
Using formula of acceleration
Where, F = frictional force
m = mass
Put the value into the formula
We need to calculate the speed of the sled
Using equation of motion
Where, v = final velocity
u = initial velocity
a = acceleration
s = distance
Put the value in the equation
Hence, The speed of the sled is 3.56 m/s.