Answer:
Vertical Height = 0.784 meter, Speed back at starting point = 10 m/s
Explanation:
Given Data:
V is the overall velocity vector,
and
are its initial vertical and horizontal components

To find:
Max Height
achieved
Calculation:
1) Using the
equation of motion, we know

2) In terms of gravity
height
and the vertical component of Velocity
.
3) As
as at maximum height the vertical component of velocity is zero maximum height achieved

putting values
4) 
5) As for the speed when it reaches back its starting point, it will have a speed similar to its launching speed, the reason being the absence of air friction (Air drag)
Answer:
Explanation:
Given that,
Initial Angular velocity w=500rpm
Converting from rpm to rad/s
1rev =2πrad
1minutes =60secs
500rpm=500rev/mins
w = 500×2π/60
wi=52.36rad/s
The final angular velocity wf=0rad/s
Time to stop is t=2.6sec
We want to find angular acceleration α
Using the equation of angular motion
wf = wi + αt.
0 = 52.36 + 2.6α
-52.36=2.6α
α = -52.36/2.6
α = -20.14rad/s²
The angular acceleration is negative because it is decelerating.
Then, α=20.14rad/s²
Answer: G00gle got you bro
Explanation:
Yea
This might help and it might not:
Gravitation is the acting force between two bodies. On the other hand, gravity is the force occurring between an object and the very big object earth. Every object with some mass exerts the gravitational force on every other object having some mass. This force and its strength depend on the masses of the objects under consideration. Gravity helps to keep the planets to move in their orbit around the sun.
Gravitation is the force of attraction between any two bodies in the universe. In our universe, each object attracts each other with a certain amount of force. The large distance of separation is the main reason for its weak nature.
Gravity is the weakest type of fundamental force in nature. Still, it holds together the entire solar systems and galaxies.
Gravity has the existence with unlimited range.
Let say the two train cars are of masses
and 
now if the speed of two cars are
and 
then we can say that the momentum of two cars before they collide is given by

here two cars are moving in opposite direction so we can say that the net momentum is subtraction of two cars momentum.
Now since in these two car motion there is no external force on them while they collide
So the momentum of two cars are always conserved.
hence we can say that the final momentum of two cars will be same after collision as it is before collision
