I. Positive acceleration increases velocity. Negative acceleration decreases velocity. runner A sped up until the finish line and then slowed to a stop.
ii. Zero a acceleration implies a constant, unchanging velocity not a zero velocity. runner B achieved some velocity prior to 8s and is moving and must slow down to reach a stop.
iii. None. No aspects of this reasoning are correct. Everything she says is wrong. See iv for what/why.
iv. The sign on acceleration denotes the direction of *change in velocity* not change in direction. The sign on velocity can denote change in direction but only “forward” or “reverse” along a particular path. Cardinal direction is not indicated, generally, by the sign on velocity. It may correspond to North/South situationally but it is not an built-in feature of velocity and its sign. For example, if you are traveling with positive velocity and turn left to continue your journey you still have a positive velocity in the new direction. In fact, if you turn left again, traveling in the opposite direction as the one you started with your velocity would still be positive… in the new direction. The velocity relative to original direction could be said to be negative but that would be a confusing way to describe a journey. Maybe if you stopped the vehicle and moved in reverse, you could meaningfully say velocity was negative.
Answer: 3kg: 14.7 6kg: 29.4 9kg: 44.1
Explanation: just did it on Edge
Answer:
I need an image, but if you're talking about Potential and Kinetic energy, I will determine for you:
Explanation:
Potential Energy: stored energy that depends upon the relative position of various parts of a system.
Kinetic Energy: the form of energy that an object or a particle has by reason of its motion.
Therefore, if the skier is on top of the mountain, they would have potential energy since their energy from the ground to the top of the surface is stored. But, if the skier is in motion/mid-air from the top of a mountain, their energy is kinetic (in motion) because their stored energy (potential) is released as they step off of the surface.
Answer and explanation;
In 1670 Gabriel Mouton, Vicar of St. Paul’s Church and an astronomer proposed the swing length of a pendulum with a frequency of one beat per second as the unit of length.
In 1791 the Commission of the French Academy of Sciences proposed the name meter to the unit of length. It would equal one tens-millionth of the distance from the North Pole to the equator along the meridian through Paris.It is realistically represented by the distance between two marks on an iron bar kept in Paris.
In 1889 the 1st General Conference on Weights and Measures define the meter as the distance between two lines on a standard bar that made of an alloy of 90%platinum with 10%iridium.
In 1960 the meter was redefined as 1650763.73 wavelengths of orange-red light, in a vacuum, produced by burning the element krypton (Kr-86).
In 1984 the Geneva Conference on Weights and Measures has defined the meter as the distance light travels, in a vacuum, in 1299792458⁄ seconds with time measured by a cesium-133 atomic clock which emits pulses of radiation at very rapid, regular intervals.