The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
<h3>How to solve for the time interval</h3>
We have y = 0.175
y(x, t) = 0.350 sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.175
sin (1.25x + 99.6t) = 0.5
99.62 = pi/6
t1 = 5.257 x 10⁻³
99.6t = pi/6 + 2pi
= 0.0683
The time interval that is between the first two instants when the element has a position of 0.175 is 0.0683.
b. we have k = 1.25, w = 99.6t
v = w/k
99.6/1.25 = 79.68
s = vt
= 79.68 * 0.0683
= 5.02
Read more on waves here
brainly.com/question/25699025
#SPJ4
complete question
A transverse wave on a string is described by the wave function y(x, t) = 0.350 sin (1.25x + 99.6t) where x and y are in meters and t is in seconds. Consider the element of the string at x=0. (a) What is the time interval between the first two instants when this element has a position of y= 0.175 m? (b) What distance does the wave travel during the time interval found in part (a)?
Speed can be thought of as the rate at which an object covers distance. ... Speed has the dimensions of distance divided by time. The SI unit of speed is the metre per second, but the most common unit of speed in everyday usage is the kilometre per hour or, in the US and the UK, miles per hour........?
Answer : The mass of a sample of water is, 888.89 grams
Explanation :
Latent heat of vaporization : It is defined as the amount of heat energy released or absorbed when the liquid converted to vapor at atmospheric pressure at its boiling point.
Formula used :

where,
q = heat = 2000 kJ =
(1 kJ = 1000 J)
L = latent heat of vaporization of water = 
m = mass of sample of water = ?
Now put all the given values in the above formula, we get:

(1 kg = 1000 g)
Therefore, the mass of a sample of water is, 888.89 grams