Solid substances have molecules held tightly and close together
Liquid substances have molecules moving loosely
Gaseous molecules are moving completely freely
As moleclues get further apart, i.e. As a substance changes state from solid to liquid to gas, molecules gain kinetic energy and vibrate/move more. This means they gain heat energy (the averge energy a substance has) so the temperature increases
Substances exist in different states at different temperatures and different substances will exist in different states at the same temperature. This is to do with the forces between molecules and how much heat (energy) is required to break them
Answer:

Explanation:
Given:
- angle of launch of projectile from horizontal,

- range of projectile,

<u>We have formula for the range of projectile:</u>

putting the respective values

is the velocity with which Tom should jump to land on the other roof.
Answer:
The entropy change of the sample of water = 6.059 x 10³ J/K.mol
Explanation:
Entropy: Entropy can be defined as the measure of the degree of disorder or randomness of a substance. The S.I unit of Entropy is J/K.mol
Mathematically, entropy is expressed as
ΔS = ΔH/T....................... Equation 1
Where ΔH = heat absorbed or evolved, T = absolute temperature.
<em>Given: If 1 mole of water = 0.0018 kg,</em>
<em>ΔH = latent heat × mass = 2.26 x 10⁶ × 1 = 2.26x 10⁶ J.</em>
<em>T = 100 °C = (100+273) K = 373 K.</em>
<em>Substituting these values into equation 1,</em>
<em>ΔS =2.26x 10⁶/373</em>
ΔS = 6.059 x 10³ J/K.mol
Therefore the entropy change of the sample of water = 6.059 x 10³ J/K.mol
Power = (voltage) x (current)
Power = (240 volts) x (4 Amp)
Power = 960 watts
Momentum of car
Given: Mass m= 1,400 Kg; V = 6.0 m/s
Formula: P = mv
P = (1,400 Kg)(6.0 m/s)
P = 8,400 Kg.m/s
Velocity of the rider to have the same momentum as a car.
Mass of rider and bicycle m = 100 Kg
P = mv
V = P/m
V = 8,400 Kg.m/s/100 Kg
V = 84 m/s