Answer:
4.9 m/s
Explanation:
Since the motion of the ball is a uniformly accelerated motion (constant acceleration), we can solve the problem by using the following suvat equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance covered
For the ball in this problem,
u = 0 (it starts from rest)
is the acceleration
s = 3 m is the distance covered
Solving for v,

Answer:
<h2>
38,769.23 miles</h2>
Explanation:
given:
A car is traveling at an average speed of 70 m/s.
find:
How many km would the car travel in 6.5 hrs. ?
solution:
distance = velocity over time
let velocity = 70 m/s
time = 6.5 hrs.
convert velocity 70 m/s into m/h for consistency of units.
<u>70 mi. </u> x <u>3600 sec.</u> = 252,000 mi/hour
sec. 1 hr.
now plugin values into the formula d = v/t
d = <u>252,000 miles/hour </u>
6.5 hours
d = 38,769.23 miles
therefore, the distance travelled in 6.5 hours with a speed of 70 m/s is 38,769.23 miles
Answer:
You should use this for work related questions :/
<span>c. What is the magnitude of the tension in the string at the bottom of the circle if you are swinging it at 3.37 m/s?
</span>
Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.