1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
6

You can hear someone around the corner before you can see them due to reflection, diffraction, refraction, or absorption?

Physics
1 answer:
Irina-Kira [14]3 years ago
7 0
The answer to this is reflection, because the sound waves are reflected off of the walls
You might be interested in
If you adjust the brightness of a light until it matches the intensity of sourness of the taste of a lemon, you are engaging in
Butoxors [25]
Unrestricted Submarine Warfare
6 0
3 years ago
What is the difference between free fall and weightlessness??
joja [24]
When you are in free fall, the force of gravity is stronger than your velocity perpendicular to where you're falling, and you move at a constant speed downwards.

Under feelings of weightlessness, you are still being pulled by gravity, but your perpendicular velocity and distance from the source can cancel each other out.
3 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
What formed the lunar maria?
Greeley [361]

It was formed by ancient volcanic eruptions.

7 0
3 years ago
The graph below shows the position of an ant as it crawls over a flat picnic blanket. The total time for the ant to go from the
Mice21 [21]

The average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

The correct answer is option D.

In the given graph, we can deduce the following;

  • the total time of the motion, = 1 mins + 45 s = 60 s + 45 s = 105 s

The average speed of the ant is calculated as;

average \ speed = \frac{total \ distance }{total \ time }

The total distance from the graph is calculated as follows;

  • first horizontal distance from 2 cm to 8 cm = 8 - 2 = 6 cm
  • first upward distance from 3 cm to 5 cm = 5 - 3 = 2 cm
  • second horizontal distance from 8 cm to 6 cm = 8 - 6 = 2 cm
  • second upward distance from 5 cm to 12 cm = 12 - 5 = 7 cm
  • third horizontal distance from 6 cm to 13 cm = 13 - 6 = 7 cm
  • fourth downward distance from 12 cm to 9 cm = 3 cm
  • final horizontal distance from 13 cm to 15 cm = 2cm

The total distance = (6 + 2 + 2 + 7 + 7 + 3 + 2) cm = 29 cm

average \ speed = \frac{total \ distance }{total \ time } = \frac{29 \ cm}{105 \ s} = 0.276 \ cm/s

The average velocity is calculated as the change in displacement per change in time.

The displacement is the shortest distance between the start and end positions.

  • This shortest distance is the straight line connecting the start and end position. Call this line P
  • From the end position at x = 15 cm, draw a vertical line from y = 9 cm, to y = 3 cm. The displacement = 9 cm - 3 cm = 6 cm
  • Also, draw a horizontal line from start at x = 2 cm to x = 15 cm. The displacement = 15 cm - 2 cm = 13 cm

Notice, you have a right triangle, now calculate the length of  line P.

                                                ↓end

                                                ↓

                                                ↓ 6cm

                                                ↓

  start -------------13 cm------------

Use Pythagoras theorem to solve for P.

P^2 = 6^2 + 13^2\\\\P^2 = 36 + 169\\\\P^2 = 205\\\\P= \sqrt{205} \\\\P = 14.318 \ cm

The average velocity of the ant is calculated as;

average \ velocity= \frac{\Delta displacemnt  }{total\ time }= \frac{14.318 \ cm}{105 \  s} = 0.136 \ cm/s  \\\\

Thus, the average speed of the ant is 0.276 cm/s and the average velocity is 0.136 cm/s.

Learn more here: brainly.com/question/589950

5 0
3 years ago
Other questions:
  • A falling object accelerates from -10.0 m/s to -30.0 m/s. how much time does it take?
    14·2 answers
  • A 50.0 kg child stands at the rim of a merry-go-round of radius 1.95 m, rotating with an angular speed of 2.80 rad/s.
    12·1 answer
  • El punto de fusión del plomo es de 327 °C y su punto de ebullición, de 1750 °C. a) ¿En qué estado se encontrará un trozo de plom
    10·1 answer
  • Maritime climates can be expected in the middle of large continents.<br><br> True<br> False
    8·1 answer
  • 5.) A 2000 N bear slides down a tree at a constant velocity, what is the
    12·1 answer
  • The quantity of heat from a chemical reaction comes from
    12·1 answer
  • Sunlight travels 150,000,000 km from the sun to the earth because of?
    10·1 answer
  • If 1.4% of the mass of a human body is calcium, how many kilograms of calcium are there in a 195-pound man?
    15·2 answers
  • The allowed energies of a quantum system are 0.0 eV, 5.0 eV , and 8.5 eV .
    7·1 answer
  • During the spin cycle of your clothes washer, the tub rotates at a steady angular velocity of 31.7 rad/s. Find the angular displ
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!