Answer:
Force that acted on the body was F = 13 N
Explanation:
If once accelerated, the body covers 60 meters in 6 seconds, then its velocity is 60/6 m/s = 10 m/s
When the force was acting (for 10 seconds) the object accelerated from rest (initial velocity vi = 0) to 10 m/s (its final velocity). therefore we can use the kinematic equation for the velocity in an accelerated motion given by:

which in our case becomes;

and we can solve for the acceleration as:
a = 10/10 m/s^2 = 1 m/s^2
Therefore the force acting on the body, based on Newton's 2nd Law expression: F = m * a is:
F = 13 kg * 1 m/s^2 = 13 N
B.temperature is an indirect measurement of the heat energy in a substance
Answer:
I = 0.287 MR²
Explanation:
given,
height of the object = 3.5 m
initial velocity = 0 m/s
final velocity = 7.3 m/s
moment of inertia = ?
Using total conservation of mechanical energy
change in potential energy will be equal to change in KE (rotational) and KE(transnational)
PE = KE(transnational) + KE (rotational)

v = r ω




I = 0.287 MR²