1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
10

A new ride being built at an amusement park includes a vertical drop of 126.5 meters. Starting from rest, the ride vertically dr

ops that distance before the track curves forward. If the velocity at the bottom of the drop is 10.0 m/s and the mass of the cart and passengers is 3.5 x 104 kg, how much potential energy was converted into thermal energy (heat)?
3.7 x 107 J
4.2 x 107 J
4.5 x 107 J
8.0 x 107 J
Physics
1 answer:
navik [9.2K]3 years ago
7 0

Answer:

Potential energy converted = 4.2*10^7 [J]

Explanation:

This problem has to be analysed under the principle of energy conservation. For this case potential energy that is transformed into kinetic energy, but however not all potential energy is transformed into kinetic energy, as we are told that some of this energy dissipates in the form of heat. We must first find the potential energy.

<u>Potential energy</u>

<u />

<u>E_{p} =m*g*h\\where:\\m = mass =3.5*10^4[kg]\\g = gravity = 9.81[m/s^2]\\h = elevation = 126.5 [m]\\therefore\\E_{k} = 3.5*10^4*9.81*126.5\\E_{k} = 43433775 [J]</u>

<u />

<u>Kinetic Energy</u>

<u />

<u>E_{k}=\frac{1}{2} * m*v^{2}\\ where:\\v = velocity = 10[m/s]\\therefore:\\E_{k}=\frac{1}{2} * 3.5*10^4*10^{2}\\\\E_{k}=1750000[J]</u>

<u />

As we can see, not all potential energy has been transformed into kinetic energy. That is, part of this energy dissipates as thermal energy, so this difference of energies will be equal to the loss of energy represented as dissipated energy.

Thermal Energy\\T_{e} = 43433775-1750000\\T_{e} =41683775[J]

The previous value can be approximated to 4.2 * 10^7 [J]

You might be interested in
The Coriolis effect
alexandr402 [8]
The coriolis effect is due to the rotation of the earth. Look up youtube videos on it, its pretty cool. If we didn't have coriolis effect then hurricane's wouldn't even form! Also it affects the trajectory of hurricanes. If you look at a path a hurricane takes it always curves quite a bit. That's also because of the coriolis affect. Imagine you're on a merry go round or on some spinning disk. You throw a ball towards the center. The ball will seem to curve away from your target because you're spinning. Now its not because the ball curved and you missed, the ball goes in a straight line but because of the spinning the target you aimed at shifted. 
3 0
4 years ago
Find the Kinetic Energy of a<br>trailer of mass 30,000 kg moving at a<br>Speed of 60 km/h​
olasank [31]

Explanation: Formulas you need to use:

K=0.5mass(Velocity^2)

km/h / 3.6 ===>M/S

Step 1:

convert km/h to m/s

Put the values in the formula :

3 0
3 years ago
How do the nitrogen and other matter in your body come from other living things in the environment.
kifflom [539]

Answer:

Through Photosynthesis and Respiration Process.

3 0
3 years ago
The gradual reduction of the amplitude
Lelu [443]
The phase and amplitude of rhythms in physiology and behavior are generated by circadian oscillators and entrained to the 24 h day by exposure to the light and dark cycle and feedback from the sleep wake cycle.the extent to which the phase and amplitude of multiple rhythms are similarly affected during altered timing of light exposure  and the sleep wake cycle has not been fully characterized.
4 0
3 years ago
How much heat (in kJ) is required to warm 13.0 g of ice, initially at -12.0 ∘C, to steam at 109.0 ∘C?
Sunny_sXe [5.5K]
<h2>Answer:</h2>

39.699 kJ

<h2>Explanation:</h2>

In this situation, there are a few transformations as follows;

(i) Heat required to warm the ice from -12°C to its melting point.

(ii) Heat required to melt the ice.

(iii) Heat required to boil the melted ice to boiling point (i.e to steam)

(iv) Heat required to vapourize the water

(v) Heat required to heat the steam from 100°C to 109.0°C

The sum of all the heat processes gives the heat required to warm the ice to steam;

<h3><em>Calculate each of these heat processes</em></h3>

<em>From (i);</em>

Let the heat required to warm the ice from -12.0°C to its melting point (0°C) be Q₁.

Q₁ = m x c x ΔT        -----------------------(i)

Where;

m = mass of ice = 13.0g

c = specific heat capacity of ice = 2.09 J/g°C

ΔT = final temperature - initial temperature = 0°C - (-12°C) = 12°C

Substitute these values into equation (i) as follows;

Q₁ = 13.0 x 2.09 x 12 = 326.04 J

<em>From (ii);</em>

Let the heat required to melt the ice be Q₂. This heat is called the heat of fusion and it is given by;

Q₂ = m x L        -----------------------(ii)

Where;

m = mass of ice = 13.0g

L = latent heat of fusion of ice = 333.6 J/g

Substitute these values into equation (ii) as follows;

Q₂ = 13.0 x 333.6

Q₂ = 4336.8 J

<em>From (iii);</em>

Let the heat required to boil the melted ice from 0°C to boiling point of 100°C be Q₃.

Q₃ =  m x c x ΔT        -----------------------(i)

Where;

m = mass of melted ice (water) which is still 13.0g

c = specific heat capacity of melted ice (water) = 4.2 J/g°C

ΔT = final temperature - initial temperature = 100°C - 0°C = 100°C

Substitute these values into equation (i) as follows;

Q₁ = 13.0 x 4.2 x 100 = 5460 J

<em>From (iv);</em>

Let the heat required to vaporize the water (melted ice) be Q₄. This heat is called the heat of vaporization and it is given by;

Q₄ = m x L        -----------------------(iv)

Where;

m = mass of ice = 13.0g

L = latent heat of vaporization of water = 2257 J/g

Substitute these values into equation (iv) as follows;

Q₄ = 13.0 x 2257

Q₄ = 29341 J

<em>From (v);</em>

Let the heat required to heat the steam from 100°C to 109°C be Q₅.

Q₅ =  m x c x ΔT        -----------------------(i)

Where;

m = mass of steam which is still 13.0g

c = specific heat capacity of steam = 2.01 J/g°C

ΔT = final temperature - initial temperature = 109.0°C - 100°C = 9°C

Substitute these values into equation (i) as follows;

Q₅ = 13.0 x 2.01 x 9 = 235.17J

<em>Finally:</em>

<em>Sum all the heat values together;</em>

Q = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

Q = 326.04 + 4336.8 + 5460 + 29341 + 235.17

Q = 39699.01 J

Q = 39.699 kJ

Therefore, the amount of heat (in kJ) required is 39.699

7 0
3 years ago
Other questions:
  • What’s the origin of a meteor shower?
    13·1 answer
  • There. That is better.
    6·1 answer
  • HELP PLEASE <br>what is the total resistance an current in the diagram below
    15·1 answer
  • If you ride your bike 20 miles and it takes you 120 minutes,what is your average speed
    10·1 answer
  • Perfect Elastic Collisions
    10·1 answer
  • Consider a skateboarder who starts from rest at the top of ramp that is inclined at an angle of 18.0 ∘ to the horizontal.
    8·1 answer
  • An 8 Ω resistor is connected to a battery. The current that flows in the circuit is 2 A. Calculate the voltage of the battery.
    6·1 answer
  • Someone please help me!
    15·1 answer
  • A 1980-kg car is traveling with a speed of 15.5 m/s. What is the magnitude of the horizontal net force that is required to bring
    6·1 answer
  • what minimum volume must the slab have for a 42.0 kg woman to be able to stand on it without getting her feet wet?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!