Nope.
False.
The shift in spectral lines reveals only 'radial' motion ...
motion toward us or away from us. The spectrum
carries no information related to motion across the
line of sight.
Answer:
a) T = 2.26 N, b) v = 1.68 m / s
Explanation:
We use Newton's second law
Let's set a reference system where the x-axis is radial and the y-axis is vertical, let's decompose the tension of the string
sin 30 =
cos 30 =
Tₓ = T sin 30
T_y = T cos 30
Y axis
T_y -W = 0
T cos 30 = mg (1)
X axis
Tₓ = m a
they relate it is centripetal
a = v² / r
we substitute
T sin 30 = m
(2)
a) we substitute in 1
T =
T =
T = 2.26 N
b) from equation 2
v² =
If we know the length of the string
sin 30 = r / L
r = L sin 30
we substitute
v² =
v² =
For the problem let us take L = 1 m
let's calculate
v =
v = 1.68 m / s
I think the answer is D
Hope this helps :D
Answer:
0.39 J/g°c
Explanation:
= heat / unit of mass × unit of temperature
986.75J/16.75g
= 58.9 J/g
∆T=175°c - 25°c = 150°c
986.75 / 150°c = 6.578
986.75 / 16.75g.150°c = 0.30 j/g°c