Answer:
Explanation:
The Carnot cycle is a special case of a thermodynamic cycle that produces an ideal gas and consists of two isothermal processes and two adiabatic processes. This cycle is a theoretical solution given by Sadi Karnot to refine heat engines for their efficient use.
The formula for the coefficient of efficiency is:
η = (Q₁ - Q₂) / Q₁ = (T₁ - T₂) / T₁
Where Q₁ is is the amount of heat of the heater supplied to the working body and Q₂ is the amount of heat that the working body transfers to the refrigerator according to this T₁ is the temperature of the heater T₂ is the temperature of the refrigerator.
This formula provides a theoretical limit for the maximum value of the coefficient of efficiency of heat engines.
God is with you!!!
The terminal velocity as it falls through still air is 4.65154 in/s.
The diameter of small water droplet is 1.25 mil= 1.25×0.0254×10^-3 m
= 3.175 × 10^-5 m
Now the viscosity of still air is η = 1.83× 10⁻⁵ Pa
So the formula for drag force is:
Fd = 6πηrv
where, v is the velocity.
Now to attain terminal velocity acceleration must be zero.
→ W = Fd
ρVg = 6πrηv
ρ × 4/3 πr³×g = 6πrηv
v = 2/9 × ρgr³/ η
v = 2/9 × 10³×9.81×(3.175×10^-3) / 18.6×10^-6
v = 0.1181 m/s
v = 4.65154 in/s
Learn more about terminal velocity here:
brainly.com/question/20409472
#SPJ4
Answer:11686.5 joules
Explanation:
elastic constant(k)=53N/m
extension(e)=21m
Elastic potential energy=(k x e^2)/2
Elastic potential energy=(53 x (21)^2)/2
Elastic potential energy=(53x21x21)/2
Elastic potential energy=23373/2
Elastic potential energy=11686.5
Elastic potential energy is 11686.5 joules
Answer:
Explanation:
Speed of the source of sound = v = 44.7 m/s
Speed of sound = V = 343 m/s
a) Apparent frequency as the train approaches = f = [V /(V -v) ] × f
= [343 / (343 - 44.7) ] × 415 = 477.18 Hz
Wave length = λ = v / f = 343 / 477.18 = 0.719 m
b) Frequency heard as the train leaves = f ' = [V / ( V + v) ] f
= [343 / { 343 + 44.7 ) ] x 415
= 367.2 Hz
Wavelength when leaving = v / f = 343 / 367.2 = 0.934 m
Answer:
speed-time graph is the acceleration of the particle or straight lines acceleration is constant
a distance-time graph represents that a particle has constant speed.
Explanation: