Answer:
True
Explanation:
Because in atom the negative charge become lose or gain.
A pulley is another sort of basic machine in the lever family. We may have utilized a pulley to lift things, for example, a banner on a flagpole.
<u>Explanation:</u>
The point in a fixed pulley resembles the support of a lever. The remainder of the pulley behaves like the fixed arm of a first-class lever, since it rotates around a point. The distance from the fulcrum is the equivalent on the two sides of a fixed pulley. A fixed pulley has a mechanical advantage of one. Hence, a fixed pulley doesn't increase the force.
It essentially alters the direction of the force. A moveable pulley or a mix of pulleys can deliver a mechanical advantage of more than one. Moveable pulleys are appended to the item being moved. Fixed and moveable pulleys can be consolidated into a solitary unit to create a greater mechanical advantage.
Answer:
The direct answer to the question as written is as follows: nothing happens to gravity when someone jumps up - gravity continues exerting a force on the body of that particular someone proportional to (mass of someone) x (mass of Earth) / (distance squared). What you might be asking, however, is what is the net force acting on the body of someone jumping up. At the moment of someone jumping up there is an upward acceleration, i.e., an upward-directed force which counteracts the gravitational force - this is the net force ( a result of the jump force minus gravity). From that moment on, only gravity acts on the body. The someone moves upward gradually decelerating to the downward gravitational acceleration until they reaches the peak of the jump (zero velocity). Then, back to Earth.
No, he should place the He atom and energy on the right, and the H atoms and the heat and energy on the left.
Answer:
A. DT is given by Q= MCs DT
m = mass of the substances
Cs= is it's specific heat capacity
Ck= <u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>Q</u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
Mk ×DTk
=<u>2</u><u>5</u><u>0</u><u> </u><u>×</u><u> </u><u>9</u><u> </u><u>×</u><u> </u><u>5</u><u> </u><u> </u>
129
=Dt = 180.1085271
answer is 180degree C.
Explanation:
B. = <u>2</u><u>5</u><u>×</u><u>1</u><u>0</u> ×100
1.082
=<u>2</u><u>5</u><u>0</u><u>0</u>
1.082
= 23105.360 g/kj.