Answer:
M L1 = m L2 torques must be zero around the fulcrum
M = m L2 / L1 = .3 kg * 28 cm / 22 cm = .382 kg
Answer / Explanation
It is worthy to note that the question is incomplete. There is a part of the question that gave us the vale of V₀.
So for proper understanding, the two parts of the question will be highlighted.
A ball is thrown straight up from the edge of the roof of a building. A second ball is dropped from the roof a time of 1.19s later. You may ignore air resistance.
a) What must the height of the building be for both balls to reach the ground at the same time if (i) V₀ is 6.0 m/s and (ii) V₀ is 9.5 m/s?
b) If Vo is greater than some value Vmax, a value of h does not exist that allows both balls to hit the ground at the same time.
Solve for Vmax
Step Process
a) Where h = 1/2g [ (1/2g - V₀)² ] / [(g - V₀)²]
Where V₀ = 6m/s,
We have,
h = 4.9 [ ( 4.9 - 6)²] / [( 9.8 - 6)²]
= 0.411 m
Where V₀ = 9.5m/s
We have,
h = 4.9 [ ( 4.9 - 9.5)²] / [( 9.8 - 9.5)²]
= 1152 m
b) From the expression above, we got to realise that h is a function of V₀, therefore, the denominator can not be zero.
Consequentially, as V₀ approaches 9.8m/s, h approaches infinity.
Therefore Vₙ = V₀max = 9.8 m/s
Explanation:
rigidibiyu. jtibiti vekov oeo i irki jri kri oro lro
Answer:
Vr = 3.24m/s
The boat is going 3.24m/s relative to the bank of the river.
Explanation:
The relative speed of the boat to the bank Vr is the resultant of speed of boat relative to the water Vb and the speed of boat as a result of the water current or wind Vw
Vr = √(Vb^2 + Vw^2) .....1
Given;
Vb = 2.6m/s
Vw = distance downstream/time = 690m/355s
Vw = 1.94m/s
From equation 1 above; substituting the values
Vr = √(2.6^2 + 1.94^2)
Vr = 3.24m/s
The boat is going 3.24m/s relative to the bank of the river.
Answer:
The answers to your questions are given below
Explanation:
22. The energy of an electromagnetic wave and it's frequency are related by the following equation:
E = hf
Where:
E => is the energy
h => is the Planck's constant
f => is the frequency
From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.
23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.
Thus, gamma ray and radio wave have the same speed in space.