<h3>Question :</h3>
The goal of the Human Genome Project was to _____.
- locate specific genes that caused given diseases
- identify the RNA of the human genome
- promote friendliness among the various sciences
- map the entire human genome
<h3>Answer : </h3>
The goal of the Human Genome Project was to <u>map the entire human genome</u><u>.</u>
So, the correct option is 4th one.
Answer:
a) Na
c) Na
b) Sr
d) Ca
Explanation:
As we move from left to right across the periodic table the number of valance electrons in an atom increase. The atomic size tend to decrease in same period of periodic table because the electrons are added with in the same shell. When the electron are added, at the same time protons are also added in the nucleus. The positive charge is going to increase and this charge is greater in effect than the charge of electrons. This effect lead to the greater nuclear attraction. The electrons are pull towards the nucleus and valance shell get closer to the nucleus. As a result of this greater nuclear attraction atomic radius decreases and ionization energy increases because it is very difficult to remove the electron from atom and more energy is required.
As we move down the group atomic radii increased with increase of atomic number. The addition of electron in next level cause the atomic radii to increased. The hold of nucleus on valance shell become weaker because of shielding of electrons thus size of atom increased.
As the size of atom increases the ionization energy from top to bottom also decreases because it becomes easier to remove the electron because of less nuclear attraction and as more electrons are added the outer electrons becomes more shielded and away from nucleus.
Answer:
There are 23076 peanut M&M's in 53.768 kg of M&M's.
Explanation:
First we <u>convert 53.768 kg into g</u>:
- 53.768 kg * 1000 = 53768 g
Then we <u>divide the total mass of M&M's by the mass of one peanut M&M,</u> in order to calculate the answer:
So there are 23076 peanut M&M's in 53.768 kg of M&M's.
Answer: The forces of attraction are stronger in new attractions that are formed.
Explanation:
When a chemical reaction takes place between two or more different compounds then less reactive substance is displaced by the more reactive substance.
During this process, when bonds are broken between the reactants then it means the force of attraction is less stronger. The formation of new compounds occur because force of attraction is more in these new substances due to which its atoms come closer to each other.
Thus, we can conclude that forces of attraction are stronger in new attractions that are formed.
Answer:
Speciation can be driven by evolution, which is a process that results in the accumulation of many small genetic changes called mutations in a population over a long period of time. ... Natural selection can result in organisms that are more likely to survive and reproduce and may eventually lead to speciation.
I hope it's helpful!