A combustion reaction involves an organic compound reacted with oxygen. The general chemical equation is as follows:
<span>
Organic Compound + Oxygen = CO2 + H2O
</span><span>To calculate the amount of C present in the original sample, we use the values given and assume that there is complete combustion that is happening.
</span><span>
7.33 g CO2 ( 1 mol CO2 / 44.01 g CO2)(1 mol C / 1 mol CO2) = 0.167 mol C
Therefore, 0.167 mol of C was originally in the sample.</span>
Answer: 
Explanation:
According to ideal gas equation:

P = pressure of gas = 0.987 atm
V = Volume of gas = 12 L
n = number of moles = 0.50
R = gas constant =
T =temperature = ?


Thus the temperature of a 0.50 mol sample of a gas at 0.987 atm and a volume of 12 L is 
Answer: True
The formula of weight is w = mg, where m is the mass and g is the acceleration of gravity. If you want to calculate an object's weight, you need to know the two components: mass and gravity.
You only need to know the mass of the object because the acceleration of gravity is ALWAYS (assuming the object is on Earth) 9.8 m/s^2.
Atomic mass of boron = 10.81
<h3>What are Isotopes?</h3>
Isotopes are variants of a particular element in which they have the same number of protons but differ in the number of neutrons in the atom.
So, here as we said we have isotopes which weigh 10.01 and 11.01.
Given,
relative abundance of B-10 = 10.1 amu
relative abundance of B- 11 = 11.01 amu
percentage of B-10 = 20%
percentage of B-11 = 80%
Then the relative atomic mass depends upon the relative abundance of various isotopes of that particular element. Suppose an element consists of two isotopes and average atomic mass is equal to
(Relativeabundance(1)×Atomicmass(1)+Relativeabundance(2)×Atomicmass(2)) / (Relativeabundance(1)+Relativeabundance(2))
Atomic mass of boron = (20 × 10.01 + 80 × 11.01) / (80 + 20 )
= 1081/100
= 10.81
To learn more about atomic mass from the given link
brainly.com/question/3187640
#SPJ4
Answer:
New pressure = 42216.66 Pa
Explanation:
Given that,
Initial volume, V₁ = 5 m³
Final pressure, P₁ = 101320 Pa
Final volume, V₂ = 12 m³
We need to find the final pressure of the gas. We know that the relation between pressure and volume is given by :

So, the new pressure is equal to 42216.66 Pa.