The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).
There is a specific formula to use for these type of problems.
ln (P2/ P1)= Δvap/ R x (1/T1 - 1/T2)
R= 8.314
P1= 92.0 torr
T1= 23 C + 273= 296 K
P2= 351.0 torr
T2= 45.0 C + 273= 318 K
plug the values and solve for the unknown
ln( 351.0/ 92.0)= Δvap/ 8.314 x (1/296 - 1/318)
Δvap= 47630.6 joules
Heat required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC (T2-T1)
Heat = 10.0 g (4.18 J/g-C ) ( 6.0 C )
<span>Heat = 250.8 J</span></span>
Answer:
It is one of the covalent bonds in which the electrons are shared equally; therefore, dipole moment exists between the atoms in a molecule and there is no charge separation between the atoms in a molecule.
Answer:
Solar energy is essentially the light and heat emitted from the sun