Answer:
No, it is not sufficient
Please find the workings below
Explanation:
Using E = hf
Where;
E = energy of a photon (J)
h = Planck's constant (6.626 × 10^-34 J/s)
f = frequency
However, λ = v/f
f = v/λ
Where; λ = wavelength of light = 325nm = 325 × 10^-9m
v = speed of light (3 × 10^8 m/s)
Hence, E = hv/λ
E = 6.626 × 10^-34 × 3 × 10^8 ÷ 325 × 10^-9
E = 19.878 × 10^-26 ÷ 325 × 10^-9
E = 19.878/325 × 10^ (-26+9)
E = 0.061 × 10^-17
E = 6.1 × 10^-19J
Next, we work out the energy required to dissociate 1 mole of N=N. Since the bond energy is 418 kJ/mol.
E = 418 × 10³ ÷ 6.022 × 10^23
E = 69.412 × 10^(3-23)
E = 69.412 × 10^-20
E = 6.9412 × 10^-19J
6.9412 × 10^-19J is required to break one mole of N=N bond.
Based on the workings above, the photon, which has an energy of 6.1 × 10^-19J is not sufficient to break a N=N bond that has an energy of 6.9412 × 10^-19J
Answer:
4.285 L of water must be added.
Explanation:
Hello there!
In this case, for this dilution-like problems, we need to figure out the final volume of the resulting solution so that we would be able to obtain the correct volume of diluent (water) to be added. In such a way, we can obtain the final volume, V2, as shown below:

Thus, by plugging in the initial molarity, initial volume and final molarity (0.587 M) we obtain:

It means we need to add:

Of diluent water.
Regards!
The answer is a identical