Answer: The pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Explanation:
Boyle's Law: This law states that pressure is inversely proportional to the volume of the gas at constant temperature and number of moles.
(At constant temperature and number of moles)
where,
= initial pressure of gas = 205 kPa
= final pressure of gas = ?
= initial volume of gas = 4.0 L
= final volume of gas = 12000 ml = 12 L (1L=1000ml)
(1kPa=0.0098atm)
Therefore, the pressure in atmospheres is 0.674 in the container if the temperature remains constant.
Well, if u had a spilled liquid in there (we'll simply go with water) and you had the freezer at a cold temperature it would change (like,icycles on trees when it's snowing)
The liver cells produce proteins to avoid blood clotting. They also break down old or damaged blood cells.
Answer:
7.2L
Explanation:
The details of the solution are found in the answer. The balanced stoichiometric equation is first written and the volumes on the left and right hand sides dilligiently compared and calculations are made based on simple comparisons as show.
Answer:
226.8 mg of mupirocin powder are required
Explanation:
Given that;
weight of standard pack = 22 g
mupirocin by weight = 2%
so weight of mupirocin = 2% × 22 = 2/100 × 22 = 0.44 g
so by adding the needed quantity of mupirocin powder to prepare a 3% w/w mupirocin ointment
mg of mupirocin powder are required = ?, lets rep this with x
Total weight of ointment = 22 + x g
Amount of mupirocin = 0.44 + x g
percentage of mupirocin in ointment is 3?
so
3/100 = 0.44 + x g / 22 + x g
3( 22 + x g ) = 100( 0.44 + x g )
66 + 3x g = 44 + 100x g
66 - 44 = 100x g - 3x g
97 x g = 22
x g = 22 / 97
x g = 0.2268 g
we know that; 1 gram = 1000 Milligram
so 0.2268 g = x mg
x mg = 0.2268 × 1000
x mg = 226.8 mg
Therefore, 226.8 mg of mupirocin powder are required