Answer:
1. Absorbs electromagnetic energy
2. Energy difference between the two orbits.
Explanation:
Bohr precisely describe the processes of absorption and emission of energy in terms of electronic structure. According to Bohr's model, an electron would absorb energy in the form of photons to get excited to a higher energy level as long as the photon's energy was equal to the energy difference between the initial and final energy levels. After jumping to the higher energy level or the excited state, the excited electron would be in a less stable position, so it would quickly emit a photon to relax back to a lower, more stable energy level.
Explanation:
170-95.3 = 74.7
that means
74.7% of water in hydrate
The ratio of the areas of the signals in the h NMR spectrum of pentan-3-ol is 6: 4: 1: 1. The correct option is A.
<h3>What is a NMR spectrum?</h3>
Nuclear magnetic resonance spectroscopy is a spectroscopy that shows the detailed structure and chemical environment of a chemical element.
Pentan-3-ol contain 12 hydrogen atoms. In H-NMR spectra, hydrogen atoms have same environment gives a signal.
There are 4 different kinds of signals due of the 4 different environment experienced by these 12 hydrogens.
Thus, the ratio of the areas of the signals in the h NMR spectrum of pentan-3-ol is 6: 4: 1: 1. The correct option is A.
Learn more about NMR spectrum
brainly.com/question/9812005
#SPJ4
C; The Valence electrons spend more time around the atom of F