Answer: 1. C. polar covalent: electrons shared between silicon and sulfur but attracted more to the sulfur
2. B) 
3. B) Fluorine
Explanation:
1. A polar covalent bond is defined as the bond which is formed when there is a difference of electronegativities between the atoms.
Electronegativity difference = electronegativity of sulphur- electronegativity of silicon = 2.5 -1.8 = 0.7
Thus as electronegativity difference is less than 1.7 , the cond is polar covalent and as electronegativity of sulphur is more , the electrons will be more towards sulphur.
2. A molecular compound is usually composed of two or more nonmetal elements. Example:
Ionic compound is formed by the transfer of electrons from metals to non metals. Example:
,
and 
3. For formation of a neutral ionic compound, the charges on cation and anion must be balanced. The cation is formed by loss of electrons by metals and anions are formed by gain of electrons by non metals.
Here K is having an oxidation state of +1 and as the compound formed is KZ, the oxidation state of non metallic element Z should be -1. Thus the element Z is flourine which exists as diatomic gas 
The balanced half-reaction for the product that forms at anode is Fe⁺² + 2e⁻ → Fe(s) and 2H₂O + 2e⁻ → H₂ + 2OH⁻, the product that forms at cathode is 2I⁻ → I₂ + 2e- and 2H₂O → O₂ + 4H⁺ + 4e⁻
<h3>What is Balanced Chemical Equation ?</h3>
The equation during which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation is called balanced chemical equation.
Now write the equation for FeI₂
At cathode:
Fe⁺² + 2e⁻ → Fe(s) Eo = - 0.44 V
2H₂O + 2e⁻ → H₂ + 2OH⁻ Eo = - 0.827 V
It is easy to decrease Fe⁺² ions than the water, the product which is formed at cathode is Iron.
At anode:
2I⁻ → I₂ + 2e- Eo = - 0.54 V
2H₂O → O₂ + 4H⁺ + 4e⁻ Eo = -1.23 V
O₂ gas formed at anode.
Thus from the above conclusion we can say that The balanced half-reaction for the product at anode is Fe⁺² + 2e⁻ → Fe(s) and 2H₂O + 2e⁻ → H₂ + 2OH⁻, the product that forms at cathode is 2I⁻ → I₂ + 2e- and 2H₂O → O₂ + 4H⁺ + 4e⁻.
Learn more about the Balanced chemical equation here: brainly.com/question/26694427
#SPJ4
Answer:
33.8 g Solution
Explanation:
A chemistry student needs 15.0 g of methanol for an experiment. The concentration of ethanol in the solution is 44.4% w/w, that is, there are 44.4 g of methanol every 100 g of solution. The mass of solution that would contain 15.0 g of methanol is:
15.0 g Methanol × 100 g Solution/44.4 g Methanol = 33.8 g Solution
Since 33.8 g are required and 320. g are available, there is enough solution for the requirements.
i guess its e) Mn (VII)
if it was wrong pls let me knw
The first ionization and second ionization of an atom are similar in following ways:
1. Both ionizations involve atom and energy
2. Both lose an electron.
The difference between first and second ionization of an atom is that both started and ended with different ions/atom.