Explanation:
The equation of motion of an object is given by :

Where
t is the time in seconds
We need to find the time when the object hits the ground. When the object hits the ground, h(t) = 0
So,


On solving above equation using online calculator, t = 8 seconds. So, the object hit the ground after 8 seconds. Hence, this is the required solution.
Answer:
h = 618.64 m
Explanation:
First we need to calculate the height gained by rocket while the fuel is burning. We use 2nd equation of motion for that purpose:
h₁ = Vit + (1/2)at²
where,
h₁ = height gained during the burning of fuel
Vi = Initial Velocity = 0 m/s
t = time = 7 s
a = acceleration = 8 m/s²
Therefore,
h₁ = (0 m/s)(7 s) + (1/2)(8 m/s²)(7 s)²
h₁ = 196 m
Now we use 1st equation of motion to find final speed Vf:
Vf = Vi + at
Vf = 0 m/s + (8 m/s²)(7 s)
Vf = 56 m/s
Now, we calculate height covered in free fall motion. Using 3rd equation of motion:
2ah₂ = Vf² - Vi²
where,
a = - 3.71 m/s²
h₂ = height gained during free fall motion = ?
Vf = Final Velocity = 0 m/s (since, rocket will stop at highest point)
Vi = 56 m/s
Therefore,
(2)(-3.71 m/s²)h₂ = (0 m/s)² - (56 m/s)²
h₂ = 422.64 m
So the total height gained will be:
h = h₁ + h₂
h = 196 m + 422.64 m
<u>h = 618.64 m</u>
Answer:
1832
Explanation:
From;
Δp Δx = h/4π
Δp = uncertainty in momentum
Δx = uncertainty in position
h= Plank's constant
But p =mv hence, Δp= Δmv
m= mass, v= velocity
mass of electron = 9.11 * 10^-31 Kg
Mass of proton = 1.67 * 10^-27 Kg
since m is a constant,
Δv = h/Δxm4π
For proton;
Δv = 6.6 * 10^-34/4 * 3.14 * 1.67 * 10^-27 * 1 * 10^-10
Δv = 315 ms-1
For electron;
Δv = 6.6 * 10^-34/4 * 3.14 * 9.11 * 10^-31 * 1 * 10^-10
Δv = 577000 ms-1
Ratio of uncertainty of electron to that of proton = 577000 ms-1/315 ms-1= 1832
Answer:
Un'auto si muove lungo un percorso rettilineo con velocità variabile come mostrato in figura. Quando l'auto è in possesso di A, la sua velocità è 10 ms-1 e quando è in posizione B, la sua velocità è 20 ms-1. Se l'auto impiega 5 secondi per spostarsi da A a B, trova l'accelerazione dell'auto.
Explanation: