Answer:
chemical composition
Explanation:
changes into any state of matter are physical and thus the chemical composition of the matter is unaltered
Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
<span>The best choice is hypochlorous acid nitrous acid (HNO2) because it has the nearest value of pK to the desired pH.
pKa of </span>nitrous acid<span> is 3.34
If we know pKa and pH values, we can calculate the required ratio of conjugate base (NO2⁻) to acid (HNO2) from the following equation:
pH=pKa + log(conc. of base)/( conc. of acid)
</span><span>3.19=3.34 + log c(NO2⁻)/c(HNO2)
</span><span>3.19 - 3.34 = log c(NO2⁻)/c(HNO2)
-0.15 = log c(NO2⁻)/c(HNO2)
c(NO2⁻)/c(HNO2) = 10⁰¹⁵ = 1.41
</span>
Answer: It showed that all atoms contain electrons.
Explanation:
- J.J. Thomson's experiments inside a cathode ray tube in the presence of an electric field showed that all atoms contain tiny negatively charged subatomic particles "electrons".
- Also, Thomson's plum pudding model of the atom had negatively-charged electrons embedded within a positively-charged "soup."
- Furthermore, Rutherford's gold foil experiment showed that the atom is mostly empty space with a tiny positively-charged nucleus.
- Then, Rutherford proposed the nuclear model of the atom based on these results.
Answer:
A. 1, 2, 5
Explanation:
Count the number of Ns in the formula.
- Hope that helped! Please let me know if you need a further explanation.