As the shock waves travel in concentric outward circles from the epicenter, and the diameter is measured 120 miles,
area of a circle =<span>π</span><span>r*r</span>
d=120
<span>r=<span>120/2</span></span><span>r=60</span><span><span>60*60</span>=3600</span><span>3600*π=11309.734</span>
<span>11309.734 square miles</span>
        
             
        
        
        
Answer:
Yes, a mixture can be made up of just elements and no compounds. The elements never experiance a chemical interaction and stay only in physical contact with each other.
BRAILIEST PLS I NEED LEVEL UP!
 
        
             
        
        
        
Answer:
dT(t)/dt = k[T5 - T(t)]
Explanation:
Since T(t) represents the temperature of the object and T5 represents the temperature of the surroundings, according to Newton's law of cooling, the rate at which an object's temperature changes is directly proportional to the difference in temperature between the object and the surrounding medium, that is dT(t)/dt ∝ T5 - T(t)
Introducing the constant of proportionality
dT(t)/dt = k[T5 - T(t)]
which is the desired differential equation
 
        
                    
             
        
        
        
Answer:
Therefore,
The magnitude of the force per unit length that one wire exerts on the other is 

Explanation:
Given:
Two long, parallel wires separated by a distance,
d = 3.50 cm = 0.035 meter
Currents,

To Find:
 Magnitude of the force per unit length that one wire exerts on the other,

Solution:
 Magnitude of the force per unit length on each of @ parallel wires seperated by the distance d and carrying currents I₁ and I₂ is given by,

where,

Substituting the values we get


Therefore,
The magnitude of the force per unit length that one wire exerts on the other is 

 
        
                    
             
        
        
        
Referring to Compton scattering 
Δλ = h/m₀c (I- cos Ф)
λ' =λ = (0,0242×10⁻¹⁰) (1- cos 60°)
λ= λ' -(0.0242 × 10⁻¹⁰) (1- cos 60°)
7.19 ˣ 10⁻¹²m
The increased potential is given by 
Vₐc = hc/eλ = 6.625 × 10 ⁻³⁴ J,s) ( 3× 10⁸ m/s ( 1.6 ˣ 10 ⁻¹⁰C)
(7.19 ˣ 10⁻¹²m)
173kV.