This is a Wheatstone bridge, and the ratio of R2 to R1 equals the ratio of Rx to R3. As a result, if R2 is increased, R3 should be reduced by a factor of two.
<h3>Explain Wheatstone bridge?</h3>
A Wheatstone bridge is a type of electrical circuit that is used to measure an unknown electrical resistance by balancing two legs of a bridge circuit, one of which contains the unknown component.
The Wheatstone bridge circuit can be used to compare an unknown resistance RX to others of known value, such as R1 and R2, which have constant values and R3 which can be variable.
If we connected a voltmeter, ammeter, or galvanometer between points C and D, and then changed resistor R3 until the meters read zero, the two arms would be balanced, and the value of RX (substituting R4) would be known as indicated.
To learn more about Wheatstone bridge refer to :
brainly.com/question/15225070
#SPJ4
Answer: h = 3.34 m
Explanation:
If the hat is thrown straight up, then at its highest point it has no motion and no kinetic energy. All energy is potential energy
PE = mgh
h = PE/mg = 4.92 / (0.150(9.81)) = 3.34352... ≈3.34 m
Answer:
you have no internet connection
Answer:
It will take 29.31 seconds for the Boxster to catch the Scion
Explanation:
Given the data in the question;
lets say Toyota Scion xB is car A and Porsche Boxster convertible is B and Toyota Scion xB is car A
the distance travelled by car A is
x =
× t
where
is the speed of the car and t is time
the distance travelled by car B before reaching car A will be;
x + x₀ =
× t
Now lets replace x by
× t
so
(
× t) + x₀ =
× t
x₀ = (
× t) - (
× t)
x₀ = t (
-
)
t = x₀ / (
-
)
so we substitute
t = 170 m / (24.4 - 18.6)
t = 170 / 5.8
t = 29.31 s
Therefore; it will take 29.31 s for the Boxster to catch the Scion