This problem is providing us with the mass of propane, its enthalpy of combustion, and the initial and final temperature of water that can be heated from the burning of this fuel. At the end, the result turns out to be 42.27 L.
<h3>Combustion:</h3>
In chemistry, combustion reactions are based on the burning of fuels by using oxygen and producing both carbon dioxide and water. For propane, we will have:

Hence, we can calculate the heat released from this reaction by using the mass, which has to be converted to moles, and the given enthalpy of combustion:

<h3>Calorimetry:</h3>
In chemistry, we can analyze the mass-specific heat-temperature-heat relationship via the most general heat equation:

Thus, since Q was obtained from the previous problem, but the sign change because the released heat is now absorbed by the water, one can calculate the mass of water that rises from 20.0°C to 100.0°C with this heat:

Finally, we convert it to liters as required:

Learn more about calorimetry: brainly.com/question/1407669
Some rocks contain carbonate minerals, and the acid test can be used to help identify them.
Anatomy I think it's important to know anatomy as a young adult so u are self aware of your body
Answer:
236.02 grams of Na is produced by 600g of NaCl.
Explanation:
NaCl --> Na+Cl-
to find the number of moles NaCl has, divide the grams over the molar mass which is 600/58.44
number of moles of nacl= 10.2 moles
then turn moles back to grams which is moles x molar mass
10.2 moles x 22.9 mass
= 236.02 grams
CO + 2 H2 → CH3OH
<span> find # of mols in each reactants, </span>
<span>152500 g CO x 1 mol CO / 28.01g CO = 5444 mol CO </span>
<span>24500 g H2 x 1 mol H2 / 2.02 g H2 = 12129 mol H2 </span>
<span>mol ratio between CO and H2 is 1:2, which means each mol of production of CH3OH need 1 mol of CO and 2 mol of H. </span>
<span>H2 is enough to produce 6064 mols of CH3OH but there are only 5444mol of CO. </span>
<span>5444 mol CH3OH x molar mass of CH3OH / 1 mol CH3OH </span>
<span>= 174371 g = 174.4 kg</span>