<h3><u>Condensation of gases into liquids by kinetic molecular theory:</u></h3>
The "kinetic molecular theory" explains the states of matter based on the matter composed of very tiny little particles that are constantly in motion. The theory also explains the observable properties and behaviors of solids, liquids, and gases.
Condensation of particles of a real gas to form liquid is due to the attractive forces present in between them. During the condensation process, gas molecules slows down and come together to form a liquid. And also during the transfer of energy to something cooler, the process slows down and they attract the bond to become liquid. Each particle motion is completely independent. The kinetic energy of gas particles is dependent on the temperature of the gas.
While most constellations are only visible to us in different seasons, some are always there 24/7/365 because they are positioned close to the Polar Axis, or the Polaris.
Answer:
Temperature.
Explanation:
Temperature is a measure of the average kinetic energy of a system.
Answer: 
Explanation:
Electron gain enthalpy is defined as energy released on addition of electron to an isolated gaseous atom.
The amount of energy released will be maximum when the tendency to attract electrons is maximum. As flourine has atomic number of 9 and has electronic configuration of 2,7. It can readily gain 1 electron to attain stable noble gas configuration and hence liberates maximum energy.
Answer:
The answer to your question is 25.2 g of acetic acid.
Explanation:
Data
[Acetic acid] = 0.839 M
Volume = 0.5 L
Molecular weight = 60.05 g/mol
Process
1.- Calculate the number of moles of acetic acid
Molarity = moles / volume
-Solve for moles
moles = Molarity x volume
-Substitution
moles = (0.839)(0.5)
-Result
moles = 0.4195
2.- Calculate the mass of acetic acid using proportions and cross multiplications
60.05 g ----------------------- 1 mol
x ----------------------- 0.4195 moles
x = (0.4195 x 60.05) / 1
x = 25.19 g
3.- Conclusion
25.2 g are needed to prepare 0.500 L of Acetic acid 0.839M