Answer:
The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.
Explanation:
Thermodynamic work is called the transfer of energy between the system and the environment by methods that do not depend on the difference in temperatures between the two. When a system is compressed or expanded, a thermodynamic work is produced which is called pressure-volume work (p - v).
The pressure-volume work done by a system that compresses or expands at constant pressure is given by the expression:
W system= -p*∆V
Where:
- W system: Work exchanged by the system with the environment. Its unit of measure in the International System is the joule (J)
- p: Pressure. Its unit of measurement in the International System is the pascal (Pa)
- ∆V: Volume variation (∆V = Vf - Vi). Its unit of measurement in the International System is cubic meter (m³)
In this case:
- p= 10 atm= 1.013*10⁶ Pa (being 1 atm= 101325 Pa)
- ΔV= 2 L- 20 L= -18 L= -0.018 m³ (being 1 L=0.001 m³)
Replacing:
W system= -1.013*10⁶ Pa* (-0.018 m³)
Solving:
W system= 18234 J
<u><em>The amount of work done on the system is 18234 J and the final positive sign means that this work corresponds to an increase in internal energy of the gas.</em></u>
To work out the kinetic energy of an object, you use the formula:
E = 0.5 x (mass) x (velocity)^2
One important thing, though. The units MUST be consistent. Mass needs to be in kilograms, and velocity in metres per second.
To convert the mass form grams to kilograms, we need to divide it by 1000, getting 0.0103 kg. Since the velocity is already in the units we need, we can just plug the numbers into the equation to get:
E = 0.5 x (0.0103 kg) x (48.0)^2 = 11.8656 J = 11.9 J, to 3 significant figures
Hope I helped! xx
B, but keep in mind the element sodium is very reactive (though table salts, on the other hand, are not).
Answer:
Explanation:
1)
HH H H H
| | | | |
H- C-C-C-C-C-H
| | | | |
H H H H H
This one can be written as
CH3 - CH2 - CH2 - CH2 - CH3
2)
H H H H
| | | |
H -C- C-C- C-H
| | | |
H H | H
H -C-H
|
H
This one can be written as
CH3 - CH2 -CH -CH3
|
CH3
Answer:
Explanation:
CH4 + 2O2 --> CO2 + 2H2O
1mol generates 2 moles of H2O
Therefore 6 Moles produce 12 moles of H2O