Answer:

Explanation:
We can write the expression here, but the point of the problem seems to be to see if you can manipulate the controls on the answer box to reproduce that expression.

Answer:
When an electric current flows, the shape of the magnetic field is very similar to the field of a bar magnet
Explanation:
<h2>Hello!</h2>
The answer is: B. Kinetic energy
<h2>
Why?</h2>
Since the ball is falling, speed increases because the gravity acceleration is acting. When speed increases, the kinetic energy increases too, so the ball is gaining kinetic energy.
The gravity acceleration is equal to
, it means that when falling, the ball will increase it's speed 9.81m every second.
We can calculate the kinetic energy by using the following formula:

Where:

Have a nice day!
<h2 />
D is the correct answer, assuming that this is the special case of classical kinematics at constant acceleration. You can use the equation V = Vo + at, where Vo is the initial velocity, V is the final velocity, and t is the time elapsed. In D, all three of these values are given, so you simply solve for a, the acceleration.
A and C are clearly incorrect, as mass and force (in terms of projectile motion) have no effect on an object's motion. B is incorrect because it is not useful to know the position or distance traveled, unless it will help you find displacement. Even then, you would not have enough information to use a kinematics equation to find a.