Answer:
Nope
Step-by-step explanation:
To now if a triangle is a right angle, use Pythagoras Theorem,
a^2 + b^2 = c^2
C usually be the longest side of the triangle, C = 17
Then also let a and b be 6 and 13 respectively.
6^2 + 13^2 =205
C^2 = 205
C = sqrt(205) = 14.32
therefore no this is not a right angle triangle
5. m∠C = 95°
6. m∠C = 70°
7. The other acute angle in the right triangle = 70°
8. m∠C = 70°
9. m∠C = 60° [equilateral triangle]
10. Measure of the exterior angle at ∠C = 110°
11. m∠B = 70°
12. m∠Z = 70°
<h3>What are Triangles?</h3>
A triangle is a 3-sided polygon with three sides and three angles. The sum of all its interior angles is 180 degrees. Some special triangles are:
- Isosceles triangle: has 2 equal base angles.
- Equilateral triangle: has three equal angles, each measuring 60 degrees.
- Right Triangle: Has one of its angles as 90 degrees, while the other two are acute angles.
5. m∠C = 180 - 50 - 35 [triangle sum theorem]
m∠C = 95°
6. m∠C = 180 - 25 - 85 [triangle sum theorem]
m∠C = 70°
7. The other acute angle in the right triangle = 180 - 90 - 25 [triangle sum theorem]
The other acute angle = 70°
8. m∠C = 180 - 55 - 55 [isosceles triangle]
m∠C = 70°
9. m∠C = 60° [equilateral triangle]
10. Measure of the exterior angle at ∠C = 50 + 60
Measure of the exterior angle at ∠C = 110°
11. m∠B = 115 - 45
m∠B = 70°
12. m∠Z = 180 - 35 - 75
m∠Z = 70°
Learn more about triangles on:
brainly.com/question/25215131
#SPJ1
Answer:
<u>Residue</u>
Step-by-step explanation:
Let a and b be integers. We define a mod b to be the residue of dividing a by b. For example, if a evenly divides b, then a mod b=0, 20 mod 6= 2. The modulus operator is widely used in programming, and it is convenient when a and b are large numbers.
a mod b is always a nonnegative integer. In fact, 0≤ a mod b≤ |b-1| by the division algorithm. a and b can also be negative integers. Since 8=-(-5)+3 then 8 mod -5= 3.
As a final example, some known properties can be rewritten in terms of mod. a mod 2=0 if and only if a is even. a mod 2=1 if and only if a is odd.
They can because of zero property. If we set them equal to zero we get their roots which is 3 and -2. This is the same on the x axis which is goes through. We can mark these points.