Well for a start, this makes absolutely no sense, "discovered a fuel that burns so hot that it becomes cold."
<span>And yes, it's not science if the experiment can't be repeated. In fact they should WANT it to be repeated so that you can get credit for discovering something new and then possibly harness this effect to produce useful applications. </span>
<span>For all we know they had a fewer of LN2 in the lab that got shredded by the blast, LN2 could certainly have frozen many things (not metal though, since metal is already solid at room temperature, (except for mercury)), and afterwards would leave no trace.</span>
Answer: 35 g/cm
Explanation:
Density equals mass over volume. 525 divided by 15 is 35
Explanation:
Balloon that an ocean diver takes to a pressure of 202 k Pa will get reduced in size that is the volume of the balloon will get reduced. This is because pressure and volume of the gas are inversely related to each other.
According to Boyle's law: The pressure of the gas is inversely proportional to the volume occupied by the gas at constant temperature(in Kelvins).
(At constant temperature)
The pressure beneath the sea is 202 kPa and the atmospheric pressure is 101.3 kPa . This increase in pressure will result in decrease in volume occupied by the gas inside the balloon with decrease in size of a balloon. Hence, the size of the balloon will get reduced at 202 kPa (under sea).
Answer:
The answer to your question is P2 = 2676.6 kPa
Explanation:
Data
Volume 1 = V1 = 12.8 L Volume 2 = V2 = 855 ml
Temperature 1 = T1 = -108°C Temperature 2 = 22°C
Pressure 1 = P1 = 100 kPa Pressure 2 = P2 = ?
Process
- To solve this problem use the Combined gas law.
P1V1/T1 = P2V2/T2
-Solve for P2
P2 = P1V1T2 / T1V2
- Convert temperature to °K
T1 = -108 + 273 = 165°K
T2 = 22 + 273 = 295°K
- Convert volume 2 to liters
1000 ml -------------------- 1 l
855 ml -------------------- x
x = (855 x 1) / 1000
x = 0.855 l
-Substitution
P2 = (12.8 x 100 x 295) / (165 x 0.855)
-Simplification
P2 = 377600 / 141.075
-Result
P2 = 2676.6 kPa
Answer:
Passive Transport
Explanation:
The three examples of passive transport are
Diffuison
Osmosis
facilated diffuison
So the answer can be A or B