<span>The number of the group identifies the column of the standard periodic table in which the element appears.</span>
Group 1 contains the alkali metals ( lithium<span> (</span>Li<span>), </span>sodium<span> (</span>Na<span>), </span>potassium<span> (</span>K<span>), </span>rubidium<span> (</span>Rb<span>), </span>caesium<span> (</span>Cs<span>), and </span>francium(Fr).)<span>
Group 2 contains the alkaline earth metals (</span> beryllium<span> (</span>Be),magnesium<span> (</span>Mg<span>), </span>calcium<span> (</span>Ca<span>), </span>strontium<span> (</span>Sr<span>), </span>barium<span> (</span>Ba<span>) and </span>radium<span> (</span>Ra<span>) )
Group 3: </span><span> Scandium (Sc) and yttrium (Y) </span>
Answer:
i. Cv =3R/2
ii. Cp = 5R/2
Explanation:
i. Cv = Molar heat capacity at constant volume
Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT
Differentiating U with respect to T, we have
= d(3/2RT)/dT
= 3R/2
ii. Cp - Molar heat capacity at constant pressure
Cp = Cv + R
substituting Cv into the equation, we have
Cp = 3R/2 + R
taking L.C.M
Cp = (3R + 2R)/2
Cp = 5R/2
Hey there,
Your question states: What factors affect the speed of water waves
Let's get one thing out the way, (wavelength) does

affect the the speed of water. If anything, it would be how high the wavelength's are. The higher the wavelengths are, the more that it would affect the speed, because there very high, but if it were to go longer on the width side, that would increase the speed, but that's not the case. Your correct answer would be (higher wavelength).
Hope this really helps you.
Yes, an object can have both of these at the same time. Potential energy is energy that is stored in an object. Kinetic energy is the energy that is associated with motion. So what you have to have is an object that is in motion but still has more energy that it has yet to convert into kinetic energy.
Answer:
Net force exerted on the radio is 27.5 Newton.
Given:
Mass = 5.5 kg
Acceleration = 5 
To find:
Force exerted on the radio = ?
Formula used:
F = ma
Where F = net force
m = mass
a = acceleration
Solution:
According to Newton's second law of motion,
F = ma
Where F = net force
m = mass
a = acceleration
F = 5.5 × 5
F = 27.5 Newton
Hence, Net force exerted on the radio is 27.5 Newton.