Answer:
get it done for free on www.brainly.com
Explanation:
Answer:
A. Thickness and temperature
Explanation:
Once energy from the Sun gets to Earth, several things can happen to it:
Energy can be scattered or absorbed by aerosols in the atmosphere. Aerosols are dust, soot, sulfates and nitric oxides. When aerosols absorb energy, the atmosphere becomes warmer. When aerosols scatter energy, the atmosphere is cooled.
Short wavelengths are absorbed by ozone in the stratosphere.
Clouds may act to either reflect energy out to space or absorb energy, trapping it in the atmosphere.
The land and water at Earth's surface may act to either reflect energy or absorb it. Light colored surfaces are more likely to reflect sunlight, while dark surfaces typically absorb the energy, warming the planet.
Albedo is the percentage of the Sun's energy that is reflected back by a surface. Light colored surfaces like ice have a high albedo, while dark colored surfaces tend to have a lower albedo. The buildings and pavement in cities have such a low albedo that cities have been called "heat islands" because they absorb so much energy that they warm up.
Answer:
The total elongation for the tension member is of 0.25mm
Explanation:
Assuming that material is under a linear deformation then the relation between the stress and the specific elongation is given as:
(1)
Where E is the modulus of elasticity, σ the stress and ε the specific deformation. Also, the total longitudinal elongation can be expressed as:
(2)
Here L is the member extension and δL the change total longitudinal elongation.
Now if the stress is found then the deformation can be calculated by solving the stress-deformation equation (1). The stress applied sigama is computed dividing the axial load P by the cross-sectional area A:
Solving for epsilon and replacing the calculated value for the stress and the value for the modulus of elasticity:




Finally introducing the specific deformation and the longitudinal extension in the equation of total elongation (2):
Answer:
The difference is in who or what is observing the speed.
Explanation:
Giving that speed is relative between the objects and the reference point from which it is being observed.
It is concluded that speed alone has no direct effect on a moving object, hence it is just a determining unit for the difference in distance between two objects.
Therefore, in this case, the difference is in who or what is observing the speed.