To answer this problem, we use Hess' Law to calculate the overall enthalpy of the reactions. The goal is to add all the reactions such that the final reaction is C<span>5H12 (g) + 8O2 (g) → 5CO2 (g) + 6H2O (l) through cancellation adn multiplication. The first equation is multiplied by 5, the second one is multiplied by 6 and the third one is reversed. The final answer is -3538 J or -3.54 x10^3 kJ.</span>
Answer:
more reliable. The more results the better results you get.
Explanation:
A buffer is a solution that can resist pH change upon the addition of an acidic or basic components. It is able to neutralize small amounts of added acid or base, thus maintaining the pH of the solution relatively stable. This is important for processes and/or reactions which require specific and stable pH ranges. Buffer solutions have a working pH range and capacity which dictate how much acid/base can be neutralized before pH changes, and the amount by which it will change.
Answer:
H3PO4 + 3KOH ----> K3PO4 + 3H2O
Explanation:
The valency of K element is + 1 while that of PO4 compound is -3
Hence, at least 3 K atoms are needed to combine with PO4 to form K3PO4 compound.
Hence, the revised equation will be
H3PO4 + 3KOH ----> K3PO4 + 3H2O
Now, the number of atoms and charges of each element is a given equation are equal on both the left and right hand side.