Answer:
4. Principal and Azimuthal (subsidiary) quantum number
5.Principal, Azimuthal (subsidiary), and magnetic quantum number
6. 10 electrons
7. 32 electrons
8. 36 electrons
Explanation:
4. Principal and Azimuthal (subsidiary) quantum number because in 4d, 4 represent principal quantum number and d- represents azimuthal quantum number (having l- value as 3)
5.Principal, Azimuthal (subsidiary), and magnetic quantum number are the first three because 2 stands for principal, s-for azimuthal (l=0) and magnetic quantum number for s- orbital= 0
6. 10 electrons, because for sublevel with l= 3, is a d-sub-level, and d- can take 10-electrons
7. 32 electrons, using the relationship 2×n^2 for the maximum number of electrons in a shell,
,n= 4 , hence 2×4^2= 32
8. 36 electrons, because n=4 and n= 3 can have the maximum configuration of [Ar]4s^2 3d^10 4p^6
This will sum up to 36- electrons, since Argon has 18 -electrons.
18+2+10+6=36 electrons
D because it was abandoned
The answer is the last option. Electronegativity is the measure of the attraction that an atom has for electrons involved in chemical bonds. It relates to covalent bonds where electrons are shared. The Pauling scale is the most used.
<span>The metal that would more easily lose an electron would be potassium. It is more reactive than sodium. Also, looking on the periodic table, </span><span>from top to bottom for groups 1 and 2, reactivity increases. So, it should be potassium. Hope this answers the question. Have a nice day.</span>
No, it won't change the amount of reactants nor the products as a catalyst will only provide an alternative path where lower activation energy is needed for the process to take place.
hope this explains it
If it does, please give it a brainliest :)))